In additional to running Spring Boot applications using java -jar
it is also possible
to make fully executable applications for Unix systems. This makes it very easy to install
and manage Spring Boot applications in common production environments.
To create a ‘fully executable’ jar with Maven use the following plugin configuration:
<plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <configuration> <executable>true</executable> </configuration> </plugin>
With Gradle, the equivalent configuration would be:
apply plugin: 'org.springframework.boot'
springBoot {
executable = true
}
You can then run your application by typing ./my-application.jar
(where
my-application
is the name of your artifact).
Note | |
---|---|
Fully executable jars work by embedding an extra script at the front of the file. Not all tools currently accept this format so you may not always be able to use this technique. |
Note | |
---|---|
The default script supports most Linux distributions and is tested on CentOS and
Ubuntu. Other platforms, such as OS X and FreeBSD, will require the use of a custom
|
Note | |
---|---|
When a fully executable jar is run, it uses the jar’s directory as the working directory. |
Spring Boot application can be easily started as Unix/Linux services using either init.d
or systemd
.
If you’ve configured Spring Boot’s Maven or Gradle plugin to generate a
fully executable jar, and you’re not using a custom
embeddedLaunchScript
, then your application can be used as an init.d
service. Simply
symlink the jar to init.d
to support the standard start
, stop
, restart
and
status
commands.
The script supports the following features:
/var/run/<appname>/<appname>.pid
/var/log/<appname>.log
Assuming that you have a Spring Boot application installed in /var/myapp
, to install a
Spring Boot application as an init.d
service simply create a symlink:
$ sudo ln -s /var/myapp/myapp.jar /etc/init.d/myapp
Once installed, you can start and stop the service in the usual way. For example, on a Debian based system:
$ service myapp start
Tip | |
---|---|
If your application fails to start, check the log file written to
|
You can also flag the application to start automatically using your standard operating system tools. For example, on Debian:
$ update-rc.d myapp defaults <priority>
Note | |
---|---|
The following is a set of guidelines on how to secure a Spring Boot application that’s being run as an init.d service. It is not intended to be an exhaustive list of everything that should be done to harden an application and the environment in which it runs. |
When executed as root, as is the case when root is being used to start an init.d service,
the default executable script will run the application as the user which owns the jar
file. You should never run a Spring Boot application as root
so your application’s jar
file should never be owned by root. Instead, create a specific user to run your
application and use chown
to make it the owner of the jar file. For example:
$ chown bootapp:bootapp your-app.jar
In this case, the default executable script will run the application as the bootapp
user.
Tip | |
---|---|
To reduce the chances of the application’s user account being compromised, you should
consider preventing it from using a login shell. Set the account’s shell to
|
You should also take steps to prevent the modification of your application’s jar file. Firstly, configure its permissions so that it cannot be written and can only be read or executed by its owner:
$ chmod 500 your-app.jar
Secondly, you should also take steps to limit the damage if your application or the
account that’s running it is compromised. If an attacker does gain access, they could make
the jar file writable and change its contents. One way to protect against this is to make
it immutable using chattr
:
$ sudo chattr +i your-app.jar
This will prevent any user, including root, from modifying the jar.
If root is used to control the application’s service and you
use a .conf
file to customize its
startup, the .conf
file will be read and evaluated by the root user. It should be
secured accordingly. Use chmod
so that the file can only be read by the owner and use
chown
to make root the owner:
$ chmod 400 your-app.conf $ sudo chown root:root your-app.conf
Systemd is the successor of the System V init system, and is now being used by many modern
Linux distributions. Although you can continue to use init.d
scripts with systemd
, it
is also possible to launch Spring Boot applications using systemd
‘service’ scripts.
Assuming that you have a Spring Boot application installed in /var/myapp
, to install a
Spring Boot application as a systemd
service create a script named myapp.service
using
the following example and place it in /etc/systemd/system
directory:
[Unit] Description=myapp After=syslog.target [Service] User=myapp ExecStart=/var/myapp/myapp.jar SuccessExitStatus=143 [Install] WantedBy=multi-user.target
Tip | |
---|---|
Remember to change the |
Tip | |
---|---|
Note that |
Note that unlike when running as an init.d
service, user that runs the application, PID
file and console log file are managed by systemd
itself and therefore must be configured
using appropriate fields in ‘service’ script. Consult the
service unit
configuration man page for more details.
To flag the application to start automatically on system boot use the following command:
$ systemctl enable myapp.service
Refer to man systemctl
for more details.
The default embedded startup script written by the Maven or Gradle plugin can be
customized in a number of ways. For most people, using the default script along with
a few customizations is usually enough. If you find you can’t customize something that
you need to, you can always use the embeddedLaunchScript
option to write your own
file entirely.
It often makes sense to customize elements of the start script as it’s written into the jar file. For example, init.d scripts can provide a “description” and, since you know this up front (and it won’t change), you may as well provide it when the jar is generated.
To customize written elements, use the embeddedLaunchScriptProperties
option of the
Spring Boot Maven or Gradle plugins.
The following property substitutions are supported with the default script:
Name | Description |
---|---|
| The script mode. Defaults to |
| The |
| The |
| The |
| The |
| The default value for |
| The default value for |
| The default value for |
| If the |
For items of the script that need to be customized after the jar has been written you can use environment variables or a config file.
The following environment properties are supported with the default script:
Variable | Description |
---|---|
| The “mode” of operation. The default depends on the way the jar was built, but will
usually be |
| If the |
| The root name of the pid folder ( |
| The name of the folder to put log files in ( |
| The name of the folder to read .conf files from (same folder as jar-file by default). |
| The name of the log file in the |
| The name of the app. If the jar is run from a symlink the script guesses the app name, but if it is not a symlink, or you want to explicitly set the app name this can be useful. |
| The arguments to pass to the program (the Spring Boot app). |
| The location of the |
| Options that are passed to the JVM when it is launched. |
| The explicit location of the jar file, in case the script is being used to launch a jar that it is not actually embedded in. |
| if not empty will set the |
Note | |
---|---|
The |
With the exception of JARFILE
and APP_NAME
, the above settings can be configured using
a .conf
file. The file is expected next to the jar file and have the same name but
suffixed with .conf
rather than .jar
. For example, a jar named /var/myapp/myapp.jar
will use the configuration file named /var/myapp/myapp.conf
.
myapp.conf.
JAVA_OPTS=-Xmx1024M LOG_FOLDER=/custom/log/folder
Tip | |
---|---|
You can use a |
To learn about securing this file appropriately, please refer to the guidelines for securing an init.d service.
Spring Boot application can be started as Windows service using
winsw
.
A sample maintained separately to the core of Spring Boot describes step-by-step how you can create a Windows service for your Spring Boot application.