For using the Apache Kafka binder, you just need to add it to your Spring Cloud Stream application, using the following Maven coordinates:
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-stream-binder-kafka</artifactId> </dependency>
Alternatively, you can also use the Spring Cloud Stream Kafka Starter.
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-stream-kafka</artifactId> </dependency>
A simplified diagram of how the Apache Kafka binder operates can be seen below.
The Apache Kafka Binder implementation maps each destination to an Apache Kafka topic. The consumer group maps directly to the same Apache Kafka concept. Partitioning also maps directly to Apache Kafka partitions as well.
This section contains the configuration options used by the Apache Kafka binder.
For common configuration options and properties pertaining to binder, refer to the core documentation.
A list of brokers to which the Kafka binder will connect.
Default: localhost
.
brokers
allows hosts specified with or without port information (e.g., host1,host2:port2
).
This sets the default port when no port is configured in the broker list.
Default: 9092
.
A list of ZooKeeper nodes to which the Kafka binder can connect.
Default: localhost
.
zkNodes
allows hosts specified with or without port information (e.g., host1,host2:port2
).
This sets the default port when no port is configured in the node list.
Default: 2181
.
Key/Value map of client properties (both producers and consumer) passed to all clients created by the binder. Due to the fact that these properties will be used by both producers and consumers, usage should be restricted to common properties, especially security settings.
Default: Empty map.
The list of custom headers that will be transported by the binder.
Default: empty.
The time to wait to get partition information in seconds; default 60. Health will report as down if this timer expires.
Default: 10.
The frequency, in milliseconds, with which offsets are saved.
Ignored if 0
.
Default: 10000
.
The frequency, in number of updates, which which consumed offsets are persisted.
Ignored if 0
.
Mutually exclusive with offsetUpdateTimeWindow
.
Default: 0
.
The number of required acks on the broker.
Default: 1
.
Effective only if autoCreateTopics
or autoAddPartitions
is set.
The global minimum number of partitions that the binder will configure on topics on which it produces/consumes data.
It can be superseded by the partitionCount
setting of the producer or by the value of instanceCount
* concurrency
settings of the producer (if either is larger).
Default: 1
.
The replication factor of auto-created topics if autoCreateTopics
is active.
Default: 1
.
If set to true
, the binder will create new topics automatically.
If set to false
, the binder will rely on the topics being already configured.
In the latter case, if the topics do not exist, the binder will fail to start.
Of note, this setting is independent of the auto.topic.create.enable
setting of the broker and it does not influence it: if the server is set to auto-create topics, they may be created as part of the metadata retrieval request, with default broker settings.
Default: true
.
If set to true
, the binder will create add new partitions if required.
If set to false
, the binder will rely on the partition size of the topic being already configured.
If the partition count of the target topic is smaller than the expected value, the binder will fail to start.
Default: false
.
Size (in bytes) of the socket buffer to be used by the Kafka consumers.
Default: 2097152
.
Enable transactions in the binder; see transaction.id
in the Kafka documentation and Transactions in the spring-kafka
documentation.
When transactions are enabled, individual producer
properties are ignored and all producers use the spring.cloud.stream.kafka.binder.transaction.producer.*
properties.
Default null
(no transactions)
Global producer properties for producers in a transactional binder.
See spring.cloud.stream.kafka.binder.transaction.transactionIdPrefix
and Section 14.3.3, “Kafka Producer Properties” and the general producer properties supported by all binders.
Default: See individual producer properties.
The following properties are available for Kafka consumers only and
must be prefixed with spring.cloud.stream.kafka.bindings.<channelName>.consumer.
.
When true
, topic partitions will be automatically rebalanced between the members of a consumer group.
When false
, each consumer will be assigned a fixed set of partitions based on spring.cloud.stream.instanceCount
and spring.cloud.stream.instanceIndex
.
This requires both spring.cloud.stream.instanceCount
and spring.cloud.stream.instanceIndex
properties to be set appropriately on each launched instance.
The property spring.cloud.stream.instanceCount
must typically be greater than 1 in this case.
Default: true
.
Whether to autocommit offsets when a message has been processed.
If set to false
, a header with the key kafka_acknowledgment
of the type org.springframework.kafka.support.Acknowledgment
header will be present in the inbound message.
Applications may use this header for acknowledging messages.
See the examples section for details.
When this property is set to false
, Kafka binder will set the ack mode to org.springframework.kafka.listener.AbstractMessageListenerContainer.AckMode.MANUAL
.
Default: true
.
Effective only if autoCommitOffset
is set to true
.
If set to false
it suppresses auto-commits for messages that result in errors, and will commit only for successful messages, allows a stream to automatically replay from the last successfully processed message, in case of persistent failures.
If set to true
, it will always auto-commit (if auto-commit is enabled).
If not set (default), it effectively has the same value as enableDlq
, auto-committing erroneous messages if they are sent to a DLQ, and not committing them otherwise.
Default: not set.
The interval between connection recovery attempts, in milliseconds.
Default: 5000
.
The starting offset for new groups.
Allowed values: earliest
, latest
.
If the consumer group is set explicitly for the consumer 'binding' (via spring.cloud.stream.bindings.<channelName>.group
), then 'startOffset' is set to earliest
; otherwise it is set to latest
for the anonymous
consumer group.
Default: null (equivalent to earliest
).
When set to true, it will send enable DLQ behavior for the consumer.
By default, messages that result in errors will be forwarded to a topic named error.<destination>.<group>
.
The DLQ topic name can be configurable via the property dlqName
.
This provides an alternative option to the more common Kafka replay scenario for the case when the number of errors is relatively small and replaying the entire original topic may be too cumbersome.
See Section 14.7, “Dead-Letter Topic Processing” processing for more information.
Starting with version 2.0, messages sent to the DLQ topic are enhanced with the following headers: x-original-topic
, x-exception-message
and x-exception-stacktrace
as byte[]
.
Default: false
.
Map with a key/value pair containing generic Kafka consumer properties.
Default: Empty map.
The name of the DLQ topic to receive the error messages.
Default: null (If not specified, messages that result in errors will be forwarded to a topic named error.<destination>.<group>
).
Using this, dlq specific producer properties can be set. All the properties available through kafka producer properties can be set through this property.
Default: Default Kafka producer properties.
Indicates which standard headers are populated by the inbound channel adapter.
none
, id
, timestamp
or both
.
Useful if using native deserialization and the first component to receive a message needs an id
(such as an aggregator that is configured to use a JDBC message store).
Default: none
The name of a bean that implements RecordMessageConverter
; used in the inbound channel adapter to replace the default MessagingMessageConverter
.
Default: null
The interval, in milliseconds between events indicating that no messages have recently been received.
Use an ApplicationListener<ListenerContainerIdleEvent>
to receive these events.
See the section called “Example: Pausing and Resuming the Consumer” for a usage example.
Default: 30000
The following properties are available for Kafka producers only and
must be prefixed with spring.cloud.stream.kafka.bindings.<channelName>.producer.
.
Upper limit, in bytes, of how much data the Kafka producer will attempt to batch before sending.
Default: 16384
.
Whether the producer is synchronous.
Default: false
.
How long the producer will wait before sending in order to allow more messages to accumulate in the same batch. (Normally the producer does not wait at all, and simply sends all the messages that accumulated while the previous send was in progress.) A non-zero value may increase throughput at the expense of latency.
Default: 0
.
A SpEL expression evaluated against the outgoing message used to populate the key of the produced Kafka message.
For example headers.key
or payload.myKey
.
Default: none
.
A comma-delimited list of simple patterns to match spring-messaging headers to be mapped to the kafka Headers
in the ProducerRecord
.
Patterns can begin or end with the wildcard character (asterisk).
Patterns can be negated by prefixing with !
; matching stops after the first match (positive or negative).
For example !foo,fo*
will pass fox
but not foo
.
id
and timestamp
are never mapped.
Default: *
(all headers - except the id
and timestamp
)
Map with a key/value pair containing generic Kafka producer properties.
Default: Empty map.
![]() | Note |
---|---|
The Kafka binder will use the |
In this section, we illustrate the use of the above properties for specific scenarios.
This example illustrates how one may manually acknowledge offsets in a consumer application.
This example requires that spring.cloud.stream.kafka.bindings.input.consumer.autoCommitOffset
is set to false.
Use the corresponding input channel name for your example.
@SpringBootApplication @EnableBinding(Sink.class) public class ManuallyAcknowdledgingConsumer { public static void main(String[] args) { SpringApplication.run(ManuallyAcknowdledgingConsumer.class, args); } @StreamListener(Sink.INPUT) public void process(Message<?> message) { Acknowledgment acknowledgment = message.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT, Acknowledgment.class); if (acknowledgment != null) { System.out.println("Acknowledgment provided"); acknowledgment.acknowledge(); } } }
Apache Kafka 0.9 supports secure connections between client and brokers.
To take advantage of this feature, follow the guidelines in the Apache Kafka Documentation as well as the Kafka 0.9 security guidelines from the Confluent documentation.
Use the spring.cloud.stream.kafka.binder.configuration
option to set security properties for all clients created by the binder.
For example, for setting security.protocol
to SASL_SSL
, set:
spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_SSL
All the other security properties can be set in a similar manner.
When using Kerberos, follow the instructions in the reference documentation for creating and referencing the JAAS configuration.
Spring Cloud Stream supports passing JAAS configuration information to the application using a JAAS configuration file and using Spring Boot properties.
The JAAS, and (optionally) krb5 file locations can be set for Spring Cloud Stream applications by using system properties. Here is an example of launching a Spring Cloud Stream application with SASL and Kerberos using a JAAS configuration file:
java -Djava.security.auth.login.config=/path.to/kafka_client_jaas.conf -jar log.jar \ --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \ --spring.cloud.stream.kafka.binder.zkNodes=secure.zookeeper:2181 \ --spring.cloud.stream.bindings.input.destination=stream.ticktock \ --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT
As an alternative to having a JAAS configuration file, Spring Cloud Stream provides a mechanism for setting up the JAAS configuration for Spring Cloud Stream applications using Spring Boot properties.
The following properties can be used for configuring the login context of the Kafka client.
The login module name. Not necessary to be set in normal cases.
Default: com.sun.security.auth.module.Krb5LoginModule
.
The control flag of the login module.
Default: required
.
Map with a key/value pair containing the login module options.
Default: Empty map.
Here is an example of launching a Spring Cloud Stream application with SASL and Kerberos using Spring Boot configuration properties:
java --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \ --spring.cloud.stream.kafka.binder.zkNodes=secure.zookeeper:2181 \ --spring.cloud.stream.bindings.input.destination=stream.ticktock \ --spring.cloud.stream.kafka.binder.autoCreateTopics=false \ --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT \ --spring.cloud.stream.kafka.binder.jaas.options.useKeyTab=true \ --spring.cloud.stream.kafka.binder.jaas.options.storeKey=true \ --spring.cloud.stream.kafka.binder.jaas.options.keyTab=/etc/security/keytabs/kafka_client.keytab \ --spring.cloud.stream.kafka.binder.jaas.options.principal=kafka-client-1@EXAMPLE.COM
This represents the equivalent of the following JAAS file:
KafkaClient { com.sun.security.auth.module.Krb5LoginModule required useKeyTab=true storeKey=true keyTab="/etc/security/keytabs/kafka_client.keytab" principal="[email protected]"; };
If the topics required already exist on the broker, or will be created by an administrator, autocreation can be turned off and only client JAAS properties need to be sent. As an alternative to setting spring.cloud.stream.kafka.binder.autoCreateTopics
you can simply remove the broker dependency from the application. See the section called “Excluding Kafka broker jar from the classpath of the binder based application” for details.
![]() | Note |
---|---|
Do not mix JAAS configuration files and Spring Boot properties in the same application.
If the |
![]() | Note |
---|---|
Exercise caution when using the |
If you wish to suspend consumption, but not cause a partition rebalance, you can pause and resume the consumer.
This is facilitated by adding the Consumer
as a parameter to your @StreamListener
.
To resume, you need an ApplicationListener
for ListenerContainerIdleEvent
s; the frequency at which events are published is controlled by the idleEventInterval
property.
Since the consumer is not thread-safe, you must call these methods on the calling thread.
The following simple application shows how to pause and resume.
@SpringBootApplication @EnableBinding(Sink.class) public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } @StreamListener(Sink.INPUT) public void in(String in, @Header(KafkaHeaders.CONSUMER) Consumer<?, ?> consumer) { System.out.println(in); consumer.pause(Collections.singleton(new TopicPartition("myTopic", 0))); } @Bean public ApplicationListener<ListenerContainerIdleEvent> idleListener() { return event -> { System.out.println(event); if (event.getConsumer().paused().size() > 0) { event.getConsumer().resume(event.getConsumer().paused()); } }; } }
The default Kafka support in Spring Cloud Stream Kafka binder is for Kafka version 0.10.1.1. The binder also supports connecting to other 0.10 based versions and 0.9 clients.
In order to do this, when you create the project that contains your application, include spring-cloud-starter-stream-kafka
as you normally would do for the default binder.
Then add these dependencies at the top of the <dependencies>
section in the pom.xml file to override the dependencies.
Here is an example for downgrading your application to 0.10.0.1. Since it is still on the 0.10 line, the default spring-kafka
and spring-integration-kafka
versions can be retained.
<dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> <version>0.10.0.1</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>0.10.0.1</version> </dependency>
Here is another example of using 0.9.0.1 version.
<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> <version>1.0.5.RELEASE</version> </dependency> <dependency> <groupId>org.springframework.integration</groupId> <artifactId>spring-integration-kafka</artifactId> <version>2.0.1.RELEASE</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> <version>0.9.0.1</version> <exclusions> <exclusion> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>0.9.0.1</version> </dependency>
![]() | Note |
---|---|
The versions above are provided only for the sake of the example. For best results, we recommend using the most recent 0.10-compatible versions of the projects. |
The Apache Kafka Binder uses the administrative utilities which are part of the Apache Kafka server library to create and reconfigure topics. If the inclusion of the Apache Kafka server library and its dependencies is not necessary at runtime because the application will rely on the topics being configured administratively, the Kafka binder allows for Apache Kafka server dependency to be excluded from the application.
If you use non default versions for Kafka dependencies as advised above, all you have to do is not to include the kafka broker dependency.
If you use the default Kafka version, then ensure that you exclude the kafka broker jar from the spring-cloud-starter-stream-kafka
dependency as following.
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-starter-stream-kafka</artifactId> <exclusions> <exclusion> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.11</artifactId> </exclusion> </exclusions> </dependency>
If you exclude the Apache Kafka server dependency and the topic is not present on the server, then the Apache Kafka broker will create the topic if auto topic creation is enabled on the server. Please keep in mind that if you are relying on this, then the Kafka server will use the default number of partitions and replication factors. On the other hand, if auto topic creation is disabled on the server, then care must be taken before running the application to create the topic with the desired number of partitions.
If you want to have full control over how partitions are allocated, then leave the default settings as they are, i.e. do not exclude the kafka broker jar and ensure that spring.cloud.stream.kafka.binder.autoCreateTopics
is set to true
, which is the default.
Spring Cloud Stream Kafka support also includes a binder specifically designed for Kafka Streams binding. Using this binder, applications can be written that leverage the Kafka Streams API. For more information on Kafka Streams, see Kafka Streams API Developer Manual
Kafka Streams support in Spring Cloud Stream is based on the foundations provided by the Spring Kafka project. For details on that support, see Kafaka Streams Support in Spring Kafka.
Here are the maven coordinates for the Spring Cloud Stream KStream binder artifact.
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-stream-binder-kstream</artifactId> </dependency>
High level streams DSL provided through the Kafka Streams API can be used through Spring Cloud Stream support. Kafka Streams applications using the Spring Cloud Stream support can only be written using the processor model, i.e. messages read from an inbound topic and messages written to an outbound topic.
This application will listen from a Kafka topic and write the word count for each unique word that it sees in a 5 seconds time window.
@SpringBootApplication @EnableBinding(KStreamProcessor.class) public class WordCountProcessorApplication { @StreamListener("input") @SendTo("output") public KStream<?, String> process(KStream<?, String> input) { return input .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+"))) .groupBy((key, value) -> value) .windowedBy(TimeWindows.of(5000)) .count(Materialized.as("WordCounts-multi")) .toStream() .map((key, value) -> new KeyValue<>(null, new WordCount(key.key(), value, new Date(key.window().start()), new Date(key.window().end())))); } public static void main(String[] args) { SpringApplication.run(WordCountProcessorApplication.class, args); }
If you build it as a Spring Boot uber jar, you can run the above example in the following way:
java -jar uber.jar --spring.cloud.stream.bindings.input.destination=words --spring.cloud.stream.bindings.output.destination=counts
This means that the application will listen from the incoming Kafka topic words
and write to the output topic counts
.
Spring Cloud Stream will ensure that the messages from both the incoming and outgoing topics are bound as KStream objects. Applications can exclusively focus on the business aspects of the code, i.e. writing the logic required in the processor rather than setting up the streams specific configuration required by the Kafka Streams infrastructure. All such interactions are handled by the framework.
If the following property is set (default is false), the framework skips all message conversions on the outbound (producer) side and it is then done by Kafka itself.
spring.cloud.stream.bindings.output.producer.useNativeEncoding
.
Similarly, if the following property is set (default is false), any message conversion is skipped on the inbound (consumer) side and natively done by Kafka.
spring.cloud.stream.bindings.input.consumer.useNativeDecoding
.
When native encoding is disabled, then the messages on the outbound are converted by Spring Cloud Stream using the provided contentType
header.
If no contentType is set by the application, it defaults to application/json
.
By default, all the out of the box message converters, serialize the data as byte[]
encoding the proper contentType.
In most situations, this is what you want to do, but if other formats than byte[]
are desired, then ann appropriate message converter needs to be registered in the context and corresponding contentType specified as a property.
When doing this way, Serdes should be overridden on the producer using the following property.
spring.cloud.stream.kstream.bindings.output.producer.valueSerde
.
Keys will not get converted, but if the Serdes are different for keys from what is given as the common Serde, you can override that using the following property.
spring.cloud.stream.kstream.bindings.output.producer.keySerde
.
Kafka Streams allow outbound data to be split into multiple topics based on some predicates.
Spring Cloud Stream Kafka Streams binder provides support for this feature without losing the overall programming model exposed through StreamListener
in the end user application.
You write the application in the usual way as demonstrated above in the word count example.
When using the branching feature, you are required to do a few things.
First, you need to make sure that your return type is KStream[]
instead of a regular KStream
.
Then you need to use the SendTo
annotation containing the output bindings in the order (example below).
For each of these output bindings, you need to configure destination, content-type etc. as required by any other standard Spring Cloud Stream application
Here is an example:
@EnableBinding(KStreamProcessorWithBranches.class) @EnableAutoConfiguration public static class WordCountProcessorApplication { @Autowired private TimeWindows timeWindows; @StreamListener("input") @SendTo({"output1","output2","output3}) public KStream<?, WordCount>[] process(KStream<Object, String> input) { Predicate<Object, WordCount> isEnglish = (k, v) -> v.word.equals("english"); Predicate<Object, WordCount> isFrench = (k, v) -> v.word.equals("french"); Predicate<Object, WordCount> isSpanish = (k, v) -> v.word.equals("spanish"); return input .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+"))) .groupBy((key, value) -> value) .windowedBy(timeWindows) .count(Materialized.as("WordCounts-1")) .toStream() .map((key, value) -> new KeyValue<>(null, new WordCount(key.key(), value, new Date(key.window().start()), new Date(key.window().end())))) .branch(isEnglish, isFrench, isSpanish); } interface KStreamProcessorWithBranches { @Input("input") KStream<?, ?> input(); @Output("output1") KStream<?, ?> output1(); @Output("output2") KStream<?, ?> output2(); @Output("output3") KStream<?, ?> output3(); } }
Then in the properties:
spring.cloud.stream.bindings.output1.contentType: application/json spring.cloud.stream.bindings.output2.contentType: application/json spring.cloud.stream.bindings.output3.contentType: application/json spring.cloud.stream.kstream.binder.configuration.commit.interval.ms: 1000 spring.cloud.stream.kstream.binder.configuration: key.serde: org.apache.kafka.common.serialization.Serdes$StringSerde value.serde: org.apache.kafka.common.serialization.Serdes$StringSerde spring.cloud.stream.bindings.output1: destination: foo producer: headerMode: raw spring.cloud.stream.bindings.output2: destination: bar producer: headerMode: raw spring.cloud.stream.bindings.output3: destination: fox producer: headerMode: raw spring.cloud.stream.bindings.input: destination: words consumer: headerMode: raw
If access to the KafkaStreams
is needed for interactive queries, the internal KafkaStreams
instance can be accessed via KStreamBuilderFactoryBean.getKafkaStreams()
.
You can autowire the KStreamBuilderFactoryBean
instance provided by the KStream binder.
Then you get KafkaStreams
instance from it and retrieve the underlying store, execute queries on it, etc.
Map with a key/value pair containing properties pertaining to Kafka Streams API.
This property must be prefixed with spring.cloud.stream.kstream.binder.
.
Following are some examples of using this property.
spring.cloud.stream.kstream.binder.configuration.key.serde=org.apache.kafka.common.serialization.Serdes$StringSerde spring.cloud.stream.kstream.binder.configuration.value.serde=org.apache.kafka.common.serialization.Serdes$StringSerde spring.cloud.stream.kstream.binder.configuration.commit.interval.ms=1000
For more information about all the properties that may go into streams configuration, see StreamsConfig JavaDocs.
There can also be binding specific properties.
For instance, you can use a different Serde for your input or output destination.
spring.cloud.stream.kstream.bindings.output.producer.keySerde=org.apache.kafka.common.serialization.Serdes$IntegerSerde spring.cloud.stream.kstream.bindings.output.producer.valueSerde=org.apache.kafka.common.serialization.Serdes$LongSerde
TimeWindow properties:
spring.cloud.stream.kstream.timeWindow.length (milliseconds) When this property is given, you can autowire a `TimeWindows` bean into the application. spring.cloud.stream.kstream.timeWindow.advanceBy (milliseconds)
Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each consumer destination, and can be configured to send async producer send failures to an error channel too. See the section called “Message Channel Binders and Error Channels” for more information.
The payload of the ErrorMessage
for a send failure is a KafkaSendFailureException
with properties:
failedMessage
- the spring-messaging Message<?>
that failed to be sent.record
- the raw ProducerRecord
that was created from the failedMessage
There is no automatic handling of producer exceptions (such as sending to a Dead-Letter queue); you can consume these exceptions with your own Spring Integration flow.
Kafka binder module exposes the following metrics:
spring.cloud.stream.binder.kafka.someGroup.someTopic.lag
- this metric indicates how many messages have not been yet consumed from given binder’s topic by given consumer group.
For example if the value of the metric spring.cloud.stream.binder.kafka.myGroup.myTopic.lag
is 1000
, then consumer group myGroup
has 1000
messages to waiting to be consumed from topic myTopic
.
This metric is particularly useful to provide auto-scaling feedback to PaaS platform of your choice.
Because it can’t be anticipated how users would want to dispose of dead-lettered messages, the framework does not provide any standard mechanism to handle them.
If the reason for the dead-lettering is transient, you may wish to route the messages back to the original topic.
However, if the problem is a permanent issue, that could cause an infinite loop.
The following spring-boot
application is an example of how to route those messages back to the original topic, but moves them to a third "parking lot" topic after three attempts.
The application is simply another spring-cloud-stream application that reads from the dead-letter topic.
It terminates when no messages are received for 5 seconds.
The examples assume the original destination is so8400out
and the consumer group is so8400
.
There are several considerations.
headerMode=raw
.
In that case, consider adding some data to the payload (that can be ignored by the main application).x-retries
has to be added to the headers
property spring.cloud.stream.kafka.binder.headers=x-retries
on both this, and the main application so that the header is transported between the applications.application.properties.
spring.cloud.stream.bindings.input.group=so8400replay spring.cloud.stream.bindings.input.destination=error.so8400out.so8400 spring.cloud.stream.bindings.output.destination=so8400out spring.cloud.stream.bindings.output.producer.partitioned=true spring.cloud.stream.bindings.parkingLot.destination=so8400in.parkingLot spring.cloud.stream.bindings.parkingLot.producer.partitioned=true spring.cloud.stream.kafka.binder.configuration.auto.offset.reset=earliest spring.cloud.stream.kafka.binder.headers=x-retries
Application.
@SpringBootApplication @EnableBinding(TwoOutputProcessor.class) public class ReRouteDlqKApplication implements CommandLineRunner { private static final String X_RETRIES_HEADER = "x-retries"; public static void main(String[] args) { SpringApplication.run(ReRouteDlqKApplication.class, args).close(); } private final AtomicInteger processed = new AtomicInteger(); @Autowired private MessageChannel parkingLot; @StreamListener(Processor.INPUT) @SendTo(Processor.OUTPUT) public Message<?> reRoute(Message<?> failed) { processed.incrementAndGet(); Integer retries = failed.getHeaders().get(X_RETRIES_HEADER, Integer.class); if (retries == null) { System.out.println("First retry for " + failed); return MessageBuilder.fromMessage(failed) .setHeader(X_RETRIES_HEADER, new Integer(1)) .setHeader(BinderHeaders.PARTITION_OVERRIDE, failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID)) .build(); } else if (retries.intValue() < 3) { System.out.println("Another retry for " + failed); return MessageBuilder.fromMessage(failed) .setHeader(X_RETRIES_HEADER, new Integer(retries.intValue() + 1)) .setHeader(BinderHeaders.PARTITION_OVERRIDE, failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID)) .build(); } else { System.out.println("Retries exhausted for " + failed); parkingLot.send(MessageBuilder.fromMessage(failed) .setHeader(BinderHeaders.PARTITION_OVERRIDE, failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID)) .build()); } return null; } @Override public void run(String... args) throws Exception { while (true) { int count = this.processed.get(); Thread.sleep(5000); if (count == this.processed.get()) { System.out.println("Idle, terminating"); return; } } } public interface TwoOutputProcessor extends Processor { @Output("parkingLot") MessageChannel parkingLot(); } }
Apache Kafka supports topic partitioning natively.
Sometimes it is advantageous to send data to specific partitions, for example when you want to strictly order message processing - all messages for a particular customer should go to the same partition.
The following illustrates how to configure the producer and consumer side:
@SpringBootApplication @EnableBinding(Source.class) public class KafkaPartitionProducerApplication { private static final Random RANDOM = new Random(System.currentTimeMillis()); private static final String[] data = new String[] { "foo1", "bar1", "qux1", "foo2", "bar2", "qux2", "foo3", "bar3", "qux3", "foo4", "bar4", "qux4", }; public static void main(String[] args) { new SpringApplicationBuilder(KafkaPartitionProducerApplication.class) .web(false) .run(args); } @InboundChannelAdapter(channel = Source.OUTPUT, poller = @Poller(fixedRate = "5000")) public Message<?> generate() { String value = data[RANDOM.nextInt(data.length)]; System.out.println("Sending: " + value); return MessageBuilder.withPayload(value) .setHeader("partitionKey", value) .build(); } }
application.yml.
spring: cloud: stream: bindings: output: destination: partitioned.topic producer: partitioned: true partition-key-expression: headers['partitionKey'] partition-count: 12
![]() | Important |
---|---|
The topic must be provisioned to have enough partitions to achieve the desired concurrency for all consumer groups.
The above configuration will support up to 12 consumer instances (or 6 if their |
![]() | Note |
---|---|
The above configuration uses the default partitioning ( |
Since partitions are natively handled by Kafka, no special configuration is needed on the consumer side. Kafka will allocate partitions across the instances.
@SpringBootApplication @EnableBinding(Sink.class) public class KafkaPartitionConsumerApplication { public static void main(String[] args) { new SpringApplicationBuilder(KafkaPartitionConsumerApplication.class) .web(false) .run(args); } @StreamListener(Sink.INPUT) public void listen(@Payload String in, @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition) { System.out.println(in + " received from partition " + partition); } }
application.yml.
spring: cloud: stream: bindings: input: destination: partitioned.topic group: myGroup
You can add instances as needed; Kafka will rebalance the partition allocations.
If the instance count (or instance count * concurrency
) exceeds the number of partitions, some consumers will be idle.