Implementing a data access layer of an application has been cumbersome for quite a while. Too much boilerplate code had to be written. Domain classes were anemic and not designed in a real object oriented or domain driven manner.
Using both of these technologies makes developers life a lot easier regarding rich domain model's persistence. Nevertheless the amount of boilerplate code to implement repositories especially is still quite high. So the goal of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various persistence stores significantly.
The following chapters will introduce the core concepts and interfaces of Spring Data repositories in general for detailled information on the specific features of a particular store consult the later chapters of this document.
Note | |
---|---|
As this part of the documentation is pulled in from Spring Data Commons we have to decide for a particular module to be used as example. The configuration and code samples in this chapter are using the JPA module. Make sure you adapt e.g. the XML namespace declaration, types to be extended to the equivalents of the module you're actually using. |
The central interface in Spring Data repository abstraction is
Repository
(probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id
type of the domain class. This interface mainly acts as marker interface
to capture the types to deal with and help us when discovering interfaces
that extend this one. Beyond that there's
CrudRepository
which provides some
sophisticated functionality around CRUD for the entity being
managed.
Example 1.1. CrudRepository
interface
public interface CrudRepository<T, ID extends Serializable> extends Repository<T, ID> { <S extends T> S save(S entity); T findOne(ID primaryKey); Iterable<T> findAll(); Long count(); void delete(T entity); boolean exists(ID primaryKey); // … more functionality omitted. }
Saves the given entity. | |
Returns the entity identified by the given id. | |
Returns all entities. | |
Returns the number of entities. | |
Deletes the given entity. | |
Returns whether an entity with the given id exists. |
Usually we will have persistence technology specific sub-interfaces to include additional technology specific methods. We will now ship implementations for a variety of Spring Data modules that implement this interface.
On top of the CrudRepository
there is
a PagingAndSortingRepository
abstraction
that adds additional methods to ease paginated access to entities:
Example 1.2. PagingAndSortingRepository
public interface PagingAndSortingRepository<T, ID extends Serializable> extends CrudRepository<T, ID> { Iterable<T> findAll(Sort sort); Page<T> findAll(Pageable pageable); }
Accessing the second page of User
by a page
size of 20 you could simply do something like this:
PagingAndSortingRepository<User, Long> repository = // … get access to a bean Page<User> users = repository.findAll(new PageRequest(1, 20));
Next to standard CRUD functionality repositories are usually queries on the underlying datastore. With Spring Data declaring those queries becomes a four-step process:
Declare an interface extending
Repository
or one of its sub-interfaces
and type it to the domain class it shall handle.
public interface PersonRepository extends Repository<User, Long> { … }
Declare query methods on the interface.
List<Person> findByLastname(String lastname);
Setup Spring to create proxy instances for those interfaces.
<?xml version="1.0" encoding="UTF-8"?> <beans:beans xmlns:beans="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.springframework.org/schema/data/jpa" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/data/jpa http://www.springframework.org/schema/data/jpa/spring-jpa.xsd"> <repositories base-package="com.acme.repositories" /> </beans>
Note | |
---|---|
Note that we use the JPA namespace here just by example. If
you're using the repository abstraction for any other store you need
to change this to the appropriate namespace declaration of your
store module which should be exchanging |
Get the repository instance injected and use it.
public class SomeClient { @Autowired private PersonRepository repository; public void doSomething() { List<Person> persons = repository.findByLastname("Matthews"); }
At this stage we barely scratched the surface of what's possible with the repositories but the general approach should be clear. Let's go through each of these steps and figure out details and various options that you have at each stage.
As a very first step you define a domain class specific repository
interface. It's got to extend Repository
and be typed to the domain class and an ID type. If you want to expose
CRUD methods for that domain type, extend
CrudRepository
instead of
Repository
.
Usually you will have your repository interface extend
Repository
,
CrudRepository
or
PagingAndSortingRepository
. If you
don't like extending Spring Data interfaces at all you can also
annotate your repository interface with
@RepositoryDefinition
. Extending
CrudRepository
will expose a complete
set of methods to manipulate your entities. If you would rather be
selective about the methods being exposed, simply copy the ones you
want to expose from CrudRepository
into
your domain repository.
Example 1.3. Selectively exposing CRUD methods
interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> { T findOne(ID id); T save(T entity); } interface UserRepository extends MyBaseRepository<User, Long> { User findByEmailAddress(EmailAddress emailAddress); }
In the first step we define a common base interface for all our
domain repositories and expose findOne(…)
as
well as save(…)
.These methods will be routed
into the base repository implementation of the store of your choice
because they are matching the method signatures in
CrudRepository
. So our
UserRepository
will now be able to save
users, find single ones by id as well as triggering a query to find
User
s by their email address.
The next thing we have to discuss is the definition of query methods. There are two main ways that the repository proxy is able to come up with the store specific query from the method name. The first option is to derive the query from the method name directly, the second is using some kind of additionally created query. What detailed options are available pretty much depends on the actual store, however, there's got to be some algorithm that decides what actual query is created.
There are three strategies available for the repository
infrastructure to resolve the query. The strategy to be used can be
configured at the namespace through the
query-lookup-strategy
attribute. However, It might be the
case that some of the strategies are not supported for specific
datastores. Here are your options:
This strategy will try to construct a store specific query from the query method's name. The general approach is to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read more about query construction in the section called “Query creation”.
This strategy tries to find a declared query which will be used for execution first. The query could be defined by an annotation somewhere or declared by other means. Please consult the documentation of the specific store to find out what options are available for that store. If the repository infrastructure does not find a declared query for the method at bootstrap time it will fail.
This strategy is actually a combination of CREATE
and USE_DECLARED_QUERY
. It will try to lookup a
declared query first but create a custom method name based query if
no declared query was found. This is the default lookup strategy and
thus will be used if you don't configure anything explicitly. It
allows quick query definition by method names but also custom tuning
of these queries by introducing declared queries as needed.
The query builder mechanism built into Spring Data repository
infrastructure is useful to build constraining queries over entities
of the repository. We will strip the prefixes find…By
,
read…By
, as well as get…By
from the method
and start parsing the rest of it. The introducing clause can contain
further expressions such as a Distinct
to set a distinct
flag on the query to be created. However, the first By
acts as delimiter to indicate the start of the actual criterias. At a
very basic level you can define conditions on entity properties and
concatenate them with AND
and OR
.
Example 1.4. Query creation from method names
public interface PersonRepository extends Repository<User, Long> { List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname); // Enables the distinct flag for the query List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname); List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname); // Enabling ignoring case for an individual property List<Person> findByLastnameIgnoreCase(String lastname); // Enabling ignoring case for all suitable properties List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname); // Enabling static ORDER BY for a query List<Person> findByLastnameOrderByFirstnameAsc(String lastname); List<Person> findByLastnameOrderByFirstnameDesc(String lastname); }
The actual result of parsing that method will of course depend
on the persistence store we create the query for, however, there are
some general things to notice. The expressions are usually property
traversals combined with operators that can be concatenated. As you
can see in the example you can combine property expressions with And
and Or. Beyond that you also get support for various operators like
Between
, LessThan
,
GreaterThan
, Like
for the
property expressions. As the operators supported can vary from
datastore to datastore please consult the according part of the
reference documentation.
As you can see the method parser also supports setting an ignore
case flag for individual properties (e.g.
findByLastnameIgnoreCase(…)
) or for all
properties of a type that support ignoring case (i.e. usually
String
s, e.g.
findByLastnameAndFirstnameAllIgnoreCase(…)
).
Whether ignoring cases is supported my differ from store to store, so
consult the relevant sections of the store specific query method
reference docs.
Static ordering can be applied by appending an
OrderBy
clause to the query method referencing a property
and providing a sorting direction (Asc
or
Desc
). To create a query method that supports dynamic
sorting have a look at the section called “Special parameter handling”.
Property expressions can just refer to a direct property of
the managed entity (as you just saw in the example above). On query
creation time we already make sure that the parsed property is at a
property of the managed domain class. However, you can also define
constraints by traversing nested properties. Assume
Person
s have Address
es
with ZipCode
s. In that case a method name
of
List<Person> findByAddressZipCode(ZipCode zipCode);
will create the property traversal
x.address.zipCode
. The resolution algorithm starts with
interpreting the entire part (AddressZipCode
) as
property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts
splitting up the source at the camel case parts from the right side
into a head and a tail and tries to find the according property,
e.g. AddressZip
and Code
. If
we find a property with that head we take the tail and continue
building the tree down from there. As in our case the first split
does not match we move the split point to the left
(Address
, ZipCode
).
Although this should work for most cases, there might be cases
where the algorithm could select the wrong property. Suppose our
Person
class has an addressZip
property as well. Then our algorithm would match in the first split
round already and essentially choose the wrong property and finally
fail (as the type of addressZip
probably has
no code property). To resolve this ambiguity you can use
_
inside your method name to manually define
traversal points. So our method name would end up like so:
List<Person> findByAddress_ZipCode(ZipCode zipCode);
To hand parameters to your query you simply define method parameters as already seen in the examples above. Besides that we will recognizes certain specific types to apply pagination and sorting to your queries dynamically.
Example 1.5. Using Pageable and Sort in query methods
Page<User> findByLastname(String lastname, Pageable pageable); List<User> findByLastname(String lastname, Sort sort); List<User> findByLastname(String lastname, Pageable pageable);
The first method allows you to pass a
org.springframework.data.domain.Pageable
instance to the
query method to dynamically add paging to your statically defined
query. Sorting options are handed via the
Pageable
instance too. If you only need
sorting, simply add an
org.springframework.data.domain.Sort
parameter to your
method. As you also can see, simply returning a
List
is possible as well. We will then
not retrieve the additional metadata required to build the actual
Page
instance but rather simply
restrict the query to lookup only the given range of entities.
Note | |
---|---|
To find out how many pages you get for a query entirely we have to trigger an additional count query. This will be derived from the query you actually trigger by default. |
So now the question is how to create instances and bean definitions for the repository interfaces defined.
The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that supports the repository mechanism. Each of those includes a repositories element that allows you to simply define a base package that Spring will scan for you.
<?xml version="1.0" encoding="UTF-8"?> <beans:beans xmlns:beans="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.springframework.org/schema/data/jpa" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/data/jpa http://www.springframework.org/schema/data/jpa/spring-jpa.xsd"> <repositories base-package="com.acme.repositories" /> </beans:beans>
In this case we instruct Spring to scan
com.acme.repositories and all its sub packages for
interfaces extending Repository
or one
of its sub-interfaces. For each interface found it will register the
persistence technology specific
FactoryBean
to create the according
proxies that handle invocations of the query methods. Each of these
beans will be registered under a bean name that is derived from the
interface name, so an interface of
UserRepository
would be registered
under userRepository
. The base-package
attribute allows the use of wildcards, so that you can have a pattern
of scanned packages.
By default we will pick up every interface extending the
persistence technology specific
Repository
sub-interface located
underneath the configured base package and create a bean instance
for it. However, you might want finer grained control over which
interfaces bean instances get created for. To do this we support the
use of <include-filter />
and
<exclude-filter />
elements inside
<repositories />
. The semantics are exactly
equivalent to the elements in Spring's context namespace. For
details see Spring reference documentation on these
elements.
E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:
Example 1.6. Using exclude-filter element
<repositories base-package="com.acme.repositories"> <context:exclude-filter type="regex" expression=".*SomeRepository" /> </repositories>
This would exclude all interfaces ending in
SomeRepository
from being
instantiated.
The repository infrastructure can also be triggered using a
store-specific
@Enable${store}Repositories
annotation
on a JavaConfig class. For an introduction into Java based
configuration of the Spring container please have a look at the
reference documentation.[1]
A sample configuration to enable Spring Data repositories would look something like this.
Example 1.7. Sample annotation based repository configuration
@Configuration @EnableJpaRepositories("com.acme.repositories") class ApplicationConfiguration { @Bean public EntityManagerFactory entityManagerFactory() { // … } }
Note that the sample uses the JPA specific annotation which
would have to be exchanged dependingon which store module you actually
use. The same applies to the definition of the
EntityManagerFactory
bean. Please
consult the sections covering the store-specific configuration.
You can also use the repository infrastructure outside of a
Spring container usage. You will still need to have some of the Spring
libraries on your classpath but you can generally setup repositories
programmatically as well. The Spring Data modules providing repository
support ship a persistence technology specific
RepositoryFactory
that can be used as
follows:
Example 1.8. Standalone usage of repository factory
RepositoryFactorySupport factory = … // Instantiate factory here UserRepository repository = factory.getRepository(UserRepository.class);
Often it is necessary to provide a custom implementation for a few repository methods. Spring Data repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction and query method functionality. To enrich a repository with custom functionality you have to define an interface and an implementation for that functionality first and let the repository interface you provided so far extend that custom interface.
Example 1.9. Interface for custom repository functionality
interface UserRepositoryCustom { public void someCustomMethod(User user); }
Example 1.10. Implementation of custom repository functionality
class UserRepositoryImpl implements UserRepositoryCustom { public void someCustomMethod(User user) { // Your custom implementation } }
Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you can use standard dependency injection behaviour to inject references to other beans, take part in aspects and so on.
Example 1.11. Changes to the your basic repository interface
public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom { // Declare query methods here }
Let your standard repository interface extend the custom one. This makes CRUD and custom functionality available to clients.
If you use namespace configuration the repository infrastructure
tries to autodetect custom implementations by looking up classes in
the package we found a repository using the naming conventions
appending the namespace element's attribute
repository-impl-postfix
to the classname. This suffix
defaults to Impl
.
Example 1.12. Configuration example
<repositories base-package="com.acme.repository" /> <repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />
The first configuration example will try to lookup a class
com.acme.repository.UserRepositoryImpl
to act
as custom repository implementation, where the second example will try
to lookup
com.acme.repository.UserRepositoryFooBar
.
The approach above works perfectly well if your custom implementation uses annotation based configuration and autowiring entirely as it will be treated as any other Spring bean. If your custom implementation bean needs some special wiring you simply declare the bean and name it after the conventions just described. We will then pick up the custom bean by name rather than creating an instance.
Example 1.13. Manual wiring of custom implementations (I)
<repositories base-package="com.acme.repository" /> <beans:bean id="userRepositoryImpl" class="…"> <!-- further configuration --> </beans:bean>
In other cases you might want to add a single method to all of your repository interfaces. So the approach just shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared behaviour
Example 1.14. An interface declaring custom shared behaviour
public interface MyRepository<T, ID extends Serializable> extends JpaRepository<T, ID> { void sharedCustomMethod(ID id); }
Now your individual repository interfaces will extend this
intermediate interface instead of the
Repository
interface to include the
functionality declared. The second step is to create an implementation
of this interface that extends the persistence technology specific
repository base class which will then act as a custom base class for the
repository proxies.
Note | |
---|---|
The default behaviour of the Spring |
Example 1.15. Custom repository base class
public class MyRepositoryImpl<T, ID extends Serializable> extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> { private EntityManager entityManager; // There are two constructors to choose from, either can be used. public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) { super(domainClass, entityManager); // This is the recommended method for accessing inherited class dependencies. this.entityManager = entityManager; } public void sharedCustomMethod(ID id) { // implementation goes here } }
The last step is to create a custom repository factory to replace
the default RepositoryFactoryBean
that will in
turn produce a custom RepositoryFactory
. The new
repository factory will then provide your
MyRepositoryImpl
as the implementation of any
interfaces that extend the Repository
interface, replacing the SimpleJpaRepository
implementation you just extended.
Example 1.16. Custom repository factory bean
public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends Serializable> extends JpaRepositoryFactoryBean<R, T, I> { protected RepositoryFactorySupport createRepositoryFactory(EntityManager entityManager) { return new MyRepositoryFactory(entityManager); } private static class MyRepositoryFactory<T, I extends Serializable> extends JpaRepositoryFactory { private EntityManager entityManager; public MyRepositoryFactory(EntityManager entityManager) { super(entityManager); this.entityManager = entityManager; } protected Object getTargetRepository(RepositoryMetadata metadata) { return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(), entityManager); } protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) { // The RepositoryMetadata can be safely ignored, it is used by the JpaRepositoryFactory //to check for QueryDslJpaRepository's which is out of scope. return MyRepository.class; } } }
Finally you can either declare beans of the custom factory
directly or use the factory-class
attribute of the Spring
namespace to tell the repository infrastructure to use your custom
factory implementation.
Example 1.17. Using the custom factory with the namespace
<repositories base-package="com.acme.repository" factory-class="com.acme.MyRepositoryFactoryBean" />
This chapter documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts. Currently most of the integration is targeted towards Spring MVC.
Given you are developing a Spring MVC web applications you typically have to resolve domain class ids from URLs. By default it's your task to transform that request parameter or URL part into the domain class to hand it layers below then or execute business logic on the entities directly. This should look something like this:
@Controller @RequestMapping("/users") public class UserController { private final UserRepository userRepository; @Autowired public UserController(UserRepository userRepository) { Assert.notNull(repository, "Repository must not be null!"); userRepository = userRepository; } @RequestMapping("/{id}") public String showUserForm(@PathVariable("id") Long id, Model model) { // Do null check for id User user = userRepository.findOne(id); // Do null check for user model.addAttribute("user", user); return "user"; } }
First you pretty much have to declare a repository dependency for
each controller to lookup the entity managed by the controller or
repository respectively. Beyond that looking up the entity is
boilerplate as well as it's always a findOne(…)
call. Fortunately Spring provides means to register custom converting
components that allow conversion between a String
value to an arbitrary type.
For versions up to Spring 3.0 simple Java
PropertyEditor
s had to be used. Thus,
we offer a DomainClassPropertyEditorRegistrar
,
that will look up all Spring Data repositories registered in the
ApplicationContext
and register a
custom PropertyEditor
for the managed
domain class
<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"> <property name="webBindingInitializer"> <bean class="….web.bind.support.ConfigurableWebBindingInitializer"> <property name="propertyEditorRegistrars"> <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" /> </property> </bean> </property> </bean>
If you have configured Spring MVC like this you can turn your controller into the following that reduces a lot of the clutter and boilerplate.
@Controller @RequestMapping("/users") public class UserController { @RequestMapping("/{id}") public String showUserForm(@PathVariable("id") User user, Model model) { model.addAttribute("user", user); return "userForm"; } }
As of Spring 3.0 the
PropertyEditor
support is superseeded
by a new conversion infrstructure that leaves all the drawbacks of
PropertyEditor
s behind and uses a
stateless X to Y conversion approach. We now ship with a
DomainClassConverter
that pretty much mimics
the behaviour of
DomainClassPropertyEditorRegistrar
. To
configure, simply declare a bean instance and pipe the
ConversionService
being used into it's
constructor:
<mvc:annotation-driven conversion-service="conversionService" /> <bean class="org.springframework.data.repository.support.DomainClassConverter"> <constructor-arg ref="conversionService" /> </bean>
If you're using JavaConfig you can simply extend
WebMvcConfigurationSupport
and hand the
FormatingConversionService
the configuration
superclass provides into the
DomainClassConverter
instance you
create.
class WebConfiguration extends WebMvcConfigurationSupport { // Other configuration omitted @Bean public DomainClassConverter<?> domainClassConverter() { return new DomainClassConverter<FormattingConversionService>(mvcConversionService()); } }
@Controller @RequestMapping("/users") public class UserController { // DI code omitted @RequestMapping public String showUsers(Model model, HttpServletRequest request) { int page = Integer.parseInt(request.getParameter("page")); int pageSize = Integer.parseInt(request.getParameter("pageSize")); Pageable pageable = new PageRequest(page, pageSize); model.addAttribute("users", userService.getUsers(pageable)); return "users"; } }
As you can see the naive approach requires the method to contain
an HttpServletRequest
parameter that has
to be parsed manually. We even omitted an appropriate failure handling
which would make the code even more verbose. The bottom line is that the
controller actually shouldn't have to handle the functionality of
extracting pagination information from the request. So we include a
PageableArgumentResolver
that will do the work
for you.
<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"> <property name="customArgumentResolvers"> <list> <bean class="org.springframework.data.web.PageableArgumentResolver" /> </list> </property> </bean>
This configuration allows you to simplify controllers down to something like this:
@Controller @RequestMapping("/users") public class UserController { @RequestMapping public String showUsers(Model model, Pageable pageable) { model.addAttribute("users", userRepository.findAll(pageable)); return "users"; } }
The PageableArgumentResolver
will
automatically resolve request parameters to build a
PageRequest
instance. By default it will expect
the following structure for the request parameters:
Table 1.1. Request parameters evaluated by
PageableArgumentResolver
page | The page you want to retrieve |
page.size | The size of the page you want to retrieve |
page.sort | The property that should be sorted by |
page.sort.dir | The direction that should be used for sorting |
In case you need multiple Pageable
s
to be resolved from the request (for multiple tables e.g.) you can use
Spring's @Qualifier
annotation to
distinguish one from another. The request parameters then have to be
prefixed with ${qualifier}_
. So a method signature like
this:
public String showUsers(Model model, @Qualifier("foo") Pageable first, @Qualifier("bar") Pageable second) { … }
you'd have to populate foo_page
and
bar_page
and the according subproperties.
The PageableArgumentResolver
will use a
PageRequest
with the first page and a page size
of 10 by default and will use that in case it can't resolve a
PageRequest
from the request (because of
missing parameters e.g.). You can configure a global default on the
bean declaration directly. In case you might need controller method
specific defaults for the Pageable
simply annotate the method parameter with
@PageableDefaults
and specify page
(through pageNumber
), page size (through
value
) as well as sort
(the list of
properties to sort by) as wel as sortDir
(the direction
to sort by) as annotation attributes:
public String showUsers(Model model, @PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }
If you have been working with the JDBC module of Spring you're probably familiar with the support to populate a DataSource using SQL scripts. A similar abstraction is available on the repositories level although we don't use SQL as data definition language as we need to be store independent of course. Thus the populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data for the repositories to be populated with.
Assume you have a file data.json
with the
following content:
Example 1.18. Data defined in JSON
[ { "_class" : "com.acme.Person", "firstname" : "Dave", "lastname" : "Matthews" }, { "_class" : "com.acme.Person", "firstname" : "Carter", "lastname" : "Beauford" } ]
You can easily populate you repositories by using the populator
elements of the repository namespace provided in Spring Data Commons. To
get the just shown data be populated to your
PersonRepository
all you need to do is
the following:
Example 1.19. Declaring a Jackson repository populator
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:repository="http://www.springframework.org/schema/data/repository" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/data/repository http://www.springframework.org/schema/data/repository/spring-repository.xsd"> <repository:jackson-populator location="classpath:data.json" /> </beans>
This declaration causes the data.json file being read,
deserialized by a Jackson ObjectMapper
. The type
the JSON object will be unmarshalled to will be determined by inspecting
the _class
attribute of the JSON document. We will
eventually select the appropriate repository being able to handle the
object just deserialized.
To rather use XML to define the repositories shall be populated with you can use the unmarshaller-populator you hand one of the marshaller options Spring OXM provides you with.
Example 1.20. Declaring an unmarshalling repository populator (using JAXB)
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:repository="http://www.springframework.org/schema/data/repository" xmlns:oxm="http://www.springframework.org/schema/oxm" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/data/repository http://www.springframework.org/schema/data/repository/spring-repository.xsd http://www.springframework.org/schema/oxm http://www.springframework.org/schema/oxm/spring-oxm.xsd"> <repository:unmarshaller-populator location="classpath:data.json" unmarshaller-ref="unmarshaller" /> <oxm:jaxb2-marshaller contextPath="com.acme" /> </beans>
[1] JavaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java