The Spring Framework provides abstractions for asynchronous execution and scheduling of tasks
with the TaskExecutor
and TaskScheduler
interfaces, respectively. Spring also features implementations of those interfaces that support
thread pools or delegation to CommonJ within an application server environment. Ultimately
the use of these implementations behind the common interfaces abstracts away the differences
between Java SE 5, Java SE 6 and Java EE environments.
Spring also features integration classes for supporting scheduling with the
Timer
, part of the JDK since 1.3, and the Quartz Scheduler
(http://www.opensymphony.com/quartz/). Both of those schedulers
are set up using a FactoryBean
with optional references
to Timer
or Trigger
instances, respectively.
Furthermore, a convenience class for both the Quartz Scheduler and the Timer
is
available that allows you to invoke a method of an existing target object
(analogous to the normal MethodInvokingFactoryBean
operation).
Spring 2.0 introduces a new abstraction for dealing with executors. Executors are the Java 5 name for the concept of thread pools. The "executor" naming is due to the fact that there is no guarantee that the underlying implementation is actually a pool; an executor may be single-threaded or even synchronous. Spring's abstraction hides implementation details between Java SE 1.4, Java SE 5 and Java EE environments.
Spring's TaskExecutor
interface is
identical to the java.util.concurrent.Executor
interface. In fact, its primary reason for existence is to abstract away
the need for Java 5 when using thread pools. The interface has a single
method execute(Runnable task)
that accepts a task
for execution based on the semantics and configuration of the thread pool.
The TaskExecutor
was originally
created to give other Spring components an abstraction for thread pooling where
needed. Components such as the ApplicationEventMulticaster
,
JMS's AbstractMessageListenerContainer
,
and Quartz integration all use the TaskExecutor
abstraction to pool threads. However, if your beans need thread pooling behavior,
it is possible to use this abstraction for your own needs.
There are a number of pre-built implementations of
TaskExecutor
included with the
Spring distribution. In all likelihood, you shouldn't ever
need to implement your own.
SimpleAsyncTaskExecutor
This implementation does not reuse any threads, rather it starts up a new thread for each invocation. However, it does support a concurrency limit which will block any invocations that are over the limit until a slot has been freed up. If you're looking for true pooling, keep scrolling further down the page.
This implementation doesn't execute invocations asynchronously. Instead, each invocation takes place in the calling thread. It is primarily used in situations where multithreading isn't necessary such as simple test cases.
This implementation is a wrapper for a Java 5
java.util.concurrent.Executor
.
There is an alternative,
ThreadPoolTaskExecutor
,
that exposes the Executor
configuration parameters as bean properties. It
is rare to need to use the ConcurrentTaskExecutor
but if the
ThreadPoolTaskExecutor
isn't robust enough for your needs, the
ConcurrentTaskExecutor
is an alternative.
This implementation is actually a subclass of
Quartz's SimpleThreadPool
which listens to Spring's lifecycle callbacks.
This is typically used when you have a
thread pool that may need to be shared by both
Quartz and non-Quartz components.
This implementation can only be used in a Java 5
environment but is also the most commonly used
one in that environment. It exposes bean properties for
configuring a
java.util.concurrent.ThreadPoolExecutor
and wraps it in a TaskExecutor
.
If you need something advanced such as a
ScheduledThreadPoolExecutor
,
it is recommended that you use a
ConcurrentTaskExecutor
instead.
TimerTaskExecutor
This implementation uses a single
TimerTask
as its backing implementation. It's different
from the
SyncTaskExecutor
in that the method invocations are executed in a
separate thread, although they are synchronous
in that thread.
WorkManagerTaskExecutor
This implementation uses the CommonJ WorkManager
as its backing implementation and is the central
convenience class for setting up a CommonJ
WorkManager reference in a Spring context.
Similar to the
SimpleThreadPoolTaskExecutor
,
this class implements the WorkManager
interface and therefore can be used directly as
a WorkManager as well.
Spring's TaskExecutor
implementations
are used as simple JavaBeans. In the example below, we define
a bean that uses the ThreadPoolTaskExecutor
to asynchronously print out a set of messages.
import org.springframework.core.task.TaskExecutor; public class TaskExecutorExample { private class MessagePrinterTask implements Runnable { private String message; public MessagePrinterTask(String message) { this.message = message; } public void run() { System.out.println(message); } } private TaskExecutor taskExecutor; public TaskExecutorExample(TaskExecutor taskExecutor) { this.taskExecutor = taskExecutor; } public void printMessages() { for(int i = 0; i < 25; i++) { taskExecutor.execute(new MessagePrinterTask("Message" + i)); } } }
As you can see, rather than retrieving a thread from the
pool and executing yourself, you add your Runnable
to the queue and the TaskExecutor
uses its internal rules to decide when the task gets executed.
To configure the rules that the TaskExecutor
will use, simple bean properties have been exposed.
<bean id="taskExecutor" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor"> <property name="corePoolSize" value="5" /> <property name="maxPoolSize" value="10" /> <property name="queueCapacity" value="25" /> </bean> <bean id="taskExecutorExample" class="TaskExecutorExample"> <constructor-arg ref="taskExecutor" /> </bean>
In addition to the TaskExecutor
abstraction, Spring 3.0 introduces a TaskScheduler
with a variety of methods for scheduling tasks to run at some point in the future.
public interface TaskScheduler { ScheduledFuture schedule(Runnable task, Trigger trigger); ScheduledFuture schedule(Runnable task, Date startTime); ScheduledFuture scheduleAtFixedRate(Runnable task, Date startTime, long period); ScheduledFuture scheduleAtFixedRate(Runnable task, long period); ScheduledFuture scheduleWithFixedDelay(Runnable task, Date startTime, long delay); ScheduledFuture scheduleWithFixedDelay(Runnable task, long delay); }
The simplest method is the one named 'schedule' that takes a
Runnable
and Date
only. That will cause the task to run once after the specified time. All of
the other methods are capable of scheduling tasks to run repeatedly. The
fixed-rate and fixed-delay methods are for simple, periodic execution, but
the method that accepts a Trigger is much more flexible.
The Trigger
interface is
essentially inspired by JSR-236, which, as of Spring 3.0, has not yet
been officially implemented. The basic idea of the
Trigger
is that execution times may be
determined based on past execution outcomes or even arbitrary
conditions. If these determinations do take into account the outcome of
the preceding execution, that information is available within a
TriggerContext
. The
Trigger
interface itself is quite
simple:
public interface Trigger { Date nextExecutionTime(TriggerContext triggerContext); }
As you can see, the TriggerContext
is the most important part. It encapsulates all of the relevant data,
and is open for extension in the future if necessary. The
TriggerContext
is an interface (a
SimpleTriggerContext
implementation is used by
default). Here you can see what methods are available for
Trigger
implementations.
public interface TriggerContext { Date lastScheduledExecutionTime(); Date lastActualExecutionTime(); Date lastCompletionTime(); }
Spring provides two implementations of the
Trigger
interface. The most interesting
one is the CronTrigger
. It enables the
scheduling of tasks based on cron expressions. For example the
following task is being scheduled to run 15 minutes past each hour but
only during the 9-to-5 "business hours" on weekdays.
scheduler.schedule(task, new CronTrigger("* 15 9-17 * * MON-FRI"));
The other out-of-the-box implementation is a
PeriodicTrigger
that accepts a fixed period, an
optional initial delay value, and a boolean to indicate whether the
period should be interpreted as a fixed-rate or a fixed-delay. Since
the TaskScheduler
interface already
defines methods for scheduling tasks at a fixed-rate or with a
fixed-delay, those methods should be used directly whenever possible.
The value of the PeriodicTrigger
implementation
is that it can be used within components that rely on the
Trigger
abstraction. For example, it may
be convenient to allow periodic triggers, cron-based triggers, and even
custom trigger implementations to be used interchangeably. Such a
component could take advantage of dependency injection so that such
Triggers
could be configured externally.
As with Spring's TaskExecutor
abstraction, the primary benefit of the
TaskScheduler
is that code relying on
scheduling behavior need not be coupled to a particular scheduler
implementation. The flexibility this provides is particularly relevant
when running within Application Server environments where threads
should not be created directly by the application itself. For such
cases, Spring provides a
TimerManagerTaskScheduler
that delegates to a
CommonJ TimerManager instance, typically configured with a JNDI-lookup.
A simpler alternative, the
ThreadPoolTaskScheduler
, can be used whenever
external thread management is not a requirement. Internally, it
delegates to a ScheduledExecutorService
instance. ThreadPoolTaskScheduler
actually
implements Spring's TaskExecutor
interface as well, so that a single instance can be used for
asynchronous execution as soon as possible as well
as scheduled, and potentially recurring, executions.
Beginning with Spring 3.0, there is an XML namespace for configuring
TaskExecutor
and
TaskScheduler
instances. It also provides a
convenient way to configure tasks to be scheduled with a trigger.
The following element will create a
ThreadPoolTaskScheduler
instance with the
specified thread pool size.
<task:scheduler id="scheduler" pool-size="10"/>
The value provided for the 'id' attribute will be used as the prefix for thread names within the pool. The 'scheduler' element is relatively straightforward. If you do not provide a 'pool-size' attribute, the default thread pool will only have a single thread. There are no other configuration options for the scheduler.
The following will create a
ThreadPoolTaskExecutor
instance:
<task:executor id="executor" pool-size="10"/>
As with the scheduler above, the value provided for the 'id'
attribute will be used as the prefix for thread names within the pool.
As far as the pool size is concerned, the 'executor' element supports
more configuration options than the 'scheduler' element. For one thing,
the thread pool for a ThreadPoolTaskExecutor
is
itself more configurable. Rather than just a single size, an executor's
thread pool may have different values for the core
and the max size. If a single value is provided
then the executor will have a fixed-size thread pool (the core and max
sizes are the same). However, the 'executor' element's 'pool-size' attribute
also accepts a range in the form of "min-max".
<task:executor id="executorWithPoolSizeRange" pool-size="5-25" queue-capacity="100"/>
As you can see from that configuration, a 'queue-capacity' value has also been provided. The configuration of the thread pool should also be considered in light of the executor's queue capacity. For the full description of the relationship between pool size and queue capacity, consult the documentation for ThreadPoolExecutor. The main idea is that when a task is submitted, the executor will first try to use a free thread if the number of active threads is currently less than the core size. If the core size has been reached, then the task will be added to the queue as long as its capacity has not yet been reached. Only then, if the queue's capacity has been reached, will the executor create a new thread beyond the core size. If the max size has also been reached, then the executor will reject the task.
By default, the queue is unbounded, but this
is rarely the desired configuration, because it can lead to
OutOfMemoryErrors
if enough tasks are added to
that queue while all pool threads are busy. Furthermore, if the queue
is unbounded, then the max size has no effect at all. Since the
executor will always try the queue before creating a new thread beyond
the core size, a queue must have a finite capacity for the thread pool
to grow beyond the core size (this is why a fixed size
pool is the only sensible case when using an unbounded queue).
In a moment, we will review the effects of the keep-alive setting
which adds yet another factor to consider when providing a pool size
configuration. First, let's consider the case, as mentioned above, when
a task is rejected. By default, when a task is rejected, a thread pool
executor will throw a TaskRejectedException
.
However, the rejection policy is actually configurable. The exception
is thrown when using the default rejection policy which is the
AbortPolicy
implementation. For applications
where some tasks can be skipped under heavy load, either the
DiscardPolicy
or
DiscardOldestPolicy
may be configured instead.
Another option that works well for applications that need to throttle
the submitted tasks under heavy load is the
CallerRunsPolicy
. Instead of throwing an
exception or discarding tasks, that policy will simply force the thread
that is calling the submit method to run the task itself. The idea is
that such a caller will be busy while running that task and not able to
submit other tasks immediately. Therefore it provides a simple way to
throttle the incoming load while maintaining the limits of the thread
pool and queue. Typically this allows the executor to "catch up" on the
tasks it is handling and thereby frees up some capacity on the queue,
in the pool, or both. Any of these options can be chosen from an
enumeration of values available for the 'rejection-policy' attribute on
the 'executor' element.
<task:executor id="executorWithCallerRunsPolicy" pool-size="5-25" queue-capacity="100" rejection-policy="CALLER_RUNS"/>
The most powerful feature of Spring's task namespace is the support for configuring tasks to be scheduled within a Spring Application Context. This follows an approach similar to other "method-invokers" in Spring, such as that provided by the JMS namespace for configuring Message-driven POJOs. Basically a "ref" attribute can point to any Spring-managed object, and the "method" attribute provides the name of a method to be invoked on that object. Here is a simple example.
<task:scheduled-tasks scheduler="myScheduler"> <task:scheduled ref="someObject" method="someMethod" fixed-delay="5000"/> </task:scheduled-tasks> <task:scheduler id="myScheduler" pool-size="10"/>
As you can see, the scheduler is referenced by the outer element, and each individual task includes the configuration of its trigger metadata. In the preceding example, that metadata defines a periodic trigger with a fixed delay. It could also be configured with a "fixed-rate", or for more control, a "cron" attribute could be provided instead. Here's an example featuring these other options.
<task:scheduled-tasks scheduler="myScheduler"> <task:scheduled ref="someObject" method="someMethod" fixed-rate="5000"/> <task:scheduled ref="anotherObject" method="anotherMethod" cron="*/5 * * * * MON-FRI"/> </task:scheduled-tasks> <task:scheduler id="myScheduler" pool-size="10"/>
Spring 3.0 also adds annotation support for both task scheduling and asynchronous method execution.
The @Scheduled annotation can be added to a method along with trigger metadata. For example, the following method would be invoked every 5 seconds with a fixed delay, meaning that the period will be measured from the completion time of each preceding invocation.
@Scheduled(fixedDelay=5000) public void doSomething() { // something that should execute periodically }
If a fixed rate execution is desired, simply change the property name specified within the annotation. The following would be executed every 5 seconds measured between the successive start times of each invocation.
@Scheduled(fixedRate=5000) public void doSomething() { // something that should execute periodically }
If simple periodic scheduling is not expressive enough, then a cron expression may be provided. For example, the following will only execute on weekdays.
@Scheduled(cron="*/5 * * * * MON-FRI") public void doSomething() { // something that should execute on weekdays only }
Notice that the methods to be scheduled must have void returns and must not expect any arguments. If the method needs to interact with other objects from the Application Context, then those would typically have been provided through dependency injection.
Note | |
---|---|
Make sure that you are not initializing multiple instances of the same @Scheduled annotation class at runtime, unless you do want to schedule callbacks to each such instance. Related to this, make sure that you do not use @Configurable on bean classes which are annotated with @Scheduled and registered as regular Spring beans with the container: You would get double initialization otherwise, once through the container and once through the @Configurable aspect, with the consequence of each @Scheduled method being invoked twice. |
The @Async annotation can be provided on a method so that invocation of that method will occur asynchronously. In other words, the caller will return immediately upon invocation and the actual execution of the method will occur in a task that has been submitted to a Spring TaskExecutor. In the simplest case, the annotation may be applied to a void-returning method.
@Async void doSomething() { // this will be executed asynchronously }
Unlike the methods annotated with the @Scheduled annotation, these methods can expect arguments, because they will be invoked in the "normal" way by callers at runtime rather than from a scheduled task being managed by the container. For example, the following is a legitimate application of the @Async annotation.
@Async void doSomething(String s) { // this will be executed asynchronously }
Even methods that return a value can be invoked asynchronously. However, such methods are required to have a Future typed return value. This still provides the benefit of asynchronous execution so that the caller can perform other tasks prior to calling 'get()' on that Future.
@Async Future<String> returnSomething(int i) { // this will be executed asynchronously }
To enable both @Scheduled and @Async annotations, simply include the 'annotation-driven' element from the task namespace in your configuration.
<task:annotation-driven executor="myExecutor" scheduler="myScheduler"/> <task:executor id="myExecutor" pool-size="5"/> <task:scheduler id="myScheduler" pool-size="10"/>}
Notice that an executor reference is provided for handling those tasks that correspond to methods with the @Async annotation, and the scheduler reference is provided for managing those methods annotated with @Scheduled.
Quartz uses Trigger
, Job
and
JobDetail
objects to realize scheduling of all kinds of jobs.
For the basic concepts behind Quartz, have a look at
http://www.opensymphony.com/quartz. For convenience purposes,
Spring offers a couple of classes that simplify the usage of Quartz within
Spring-based applications.
JobDetail
objects contain all information needed to
run a job. The Spring Framework provides a JobDetailBean
that makes the JobDetail
more of an actual JavaBean
with sensible defaults. Let's have a look at an example:
<bean name="exampleJob" class="org.springframework.scheduling.quartz.JobDetailBean"> <property name="jobClass" value="example.ExampleJob" /> <property name="jobDataAsMap"> <map> <entry key="timeout" value="5" /> </map> </property> </bean>
The job detail bean has all information it needs to run the job (ExampleJob
).
The timeout is specified in the job data map. The job data map is
available through the JobExecutionContext
(passed to you at execution time), but the JobDetailBean
also maps the properties from the job data map to properties of the actual job.
So in this case, if the ExampleJob
contains a property
named timeout
, the JobDetailBean
will
automatically apply it:
package example; public class ExampleJob extends QuartzJobBean { private int timeout; /** * Setter called after the ExampleJob is instantiated * with the value from the JobDetailBean (5) */ public void setTimeout(int timeout) { this.timeout = timeout; } protected void executeInternal(JobExecutionContext ctx) throws JobExecutionException { // do the actual work } }
All additional settings from the job detail bean are of course available to you as well.
Note: Using the name
and group
properties,
you can modify the name and the group of the job, respectively. By default, the name of
the job matches the bean name of the job detail bean (in the example above, this is
exampleJob
).
Often you just need to invoke a method on a specific object. Using the
MethodInvokingJobDetailFactoryBean
you can do exactly this:
<bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject" ref="exampleBusinessObject" /> <property name="targetMethod" value="doIt" /> </bean>
The above example will result in the doIt
method being called on the
exampleBusinessObject
method (see below):
public class ExampleBusinessObject { // properties and collaborators public void doIt() { // do the actual work } }
<bean id="exampleBusinessObject" class="examples.ExampleBusinessObject"/>
Using the MethodInvokingJobDetailFactoryBean
, you don't need to
create one-line jobs that just invoke a method, and you only need to create the actual
business object and wire up the detail object.
By default, Quartz Jobs are stateless, resulting in the possibility of jobs interfering
with each other. If you specify two triggers for the same JobDetail
,
it might be possible that before the first job has finished, the second one will start.
If JobDetail
classes implement the
Stateful
interface, this won't happen. The second job
will not start before the first one has finished. To make jobs resulting from the
MethodInvokingJobDetailFactoryBean
non-concurrent, set the
concurrent
flag to false
.
<bean id="jobDetail" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject" ref="exampleBusinessObject" /> <property name="targetMethod" value="doIt" /> <property name="concurrent" value="false" /> </bean>
Note | |
---|---|
By default, jobs will run in a concurrent fashion. |
We've created job details and jobs. We've also reviewed the convenience bean
that allows you to invoke a method on a specific object. Of course, we still need
to schedule the jobs themselves. This is done using triggers and a
SchedulerFactoryBean
. Several triggers are available
within Quartz. Spring offers two subclassed triggers with convenient defaults:
CronTriggerBean
and SimpleTriggerBean
.
Triggers need to be scheduled. Spring offers a SchedulerFactoryBean
that exposes triggers to be set as properties. SchedulerFactoryBean
schedules the actual jobs with those triggers.
Find below a couple of examples:
<bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <!-- see the example of method invoking job above --> <property name="jobDetail" ref="jobDetail" /> <!-- 10 seconds --> <property name="startDelay" value="10000" /> <!-- repeat every 50 seconds --> <property name="repeatInterval" value="50000" /> </bean> <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="exampleJob" /> <!-- run every morning at 6 AM --> <property name="cronExpression" value="0 0 6 * * ?" /> </bean>
Now we've set up two triggers, one running every 50 seconds with a starting delay of
10 seconds and one every morning at 6 AM. To finalize everything, we need to set up the
SchedulerFactoryBean
:
<bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> <ref bean="simpleTrigger" /> </list> </property> </bean>
More properties are available for the SchedulerFactoryBean
for you
to set, such as the calendars used by the job details, properties to customize Quartz with,
etc. Have a look at the
SchedulerFactoryBean Javadoc
for more information.
The other way to schedule jobs in Spring is to use JDK
Timer
objects. You can create custom timers or
use the timer that invokes methods. Wiring timers is done using the
TimerFactoryBean
.
Using the TimerTask
you can create customer
timer tasks, similar to Quartz jobs:
public class CheckEmailAddresses extends TimerTask { private List emailAddresses; public void setEmailAddresses(List emailAddresses) { this.emailAddresses = emailAddresses; } public void run() { // iterate over all email addresses and archive them } }
Wiring it up is simple:
<bean id="checkEmail" class="examples.CheckEmailAddress"> <property name="emailAddresses"> <list> <value>[email protected]</value> <value>[email protected]</value> <value>[email protected]</value> </list> </property> </bean> <bean id="scheduledTask" class="org.springframework.scheduling.timer.ScheduledTimerTask"> <!-- wait 10 seconds before starting repeated execution --> <property name="delay" value="10000" /> <!-- run every 50 seconds --> <property name="period" value="50000" /> <property name="timerTask" ref="checkEmail" /> </bean>
Note that letting the task only run once can be done by changing the
period
property to 0 (or a negative value).
Similar to the Quartz support, the Timer
support also features
a component that allows you to periodically invoke a method:
<bean id="doIt" class="org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean"> <property name="targetObject" ref="exampleBusinessObject" /> <property name="targetMethod" value="doIt" /> </bean>
The above example will result in the doIt
method being called on the
exampleBusinessObject
(see below):
public class BusinessObject { // properties and collaborators public void doIt() { // do the actual work } }
Changing the timerTask
reference of the
ScheduledTimerTask
example to the bean doIt
will result in the doIt
method being executed on a fixed schedule.
The TimerFactoryBean
is similar to the Quartz
SchedulerFactoryBean
in that it serves the same
purpose: setting up the actual scheduling. The TimerFactoryBean
sets up an actual Timer
and schedules the tasks it has
references to. You can specify whether or not daemon threads should be used.
<bean id="timerFactory" class="org.springframework.scheduling.timer.TimerFactoryBean"> <property name="scheduledTimerTasks"> <list> <!-- see the example above --> <ref bean="scheduledTask" /> </list> </property> </bean>