The OAuth 2.0 Login feature provides an application with the capability to have users log in to the application by using their existing account at an OAuth 2.0 Provider (e.g. GitHub) or OpenID Connect 1.0 Provider (such as Google). OAuth 2.0 Login implements the use cases: "Login with Google" or "Login with GitHub".
Note | |
---|---|
OAuth 2.0 Login is implemented by using the Authorization Code Grant, as specified in the OAuth 2.0 Authorization Framework and OpenID Connect Core 1.0. |
Spring Boot 2.x brings full auto-configuration capabilities for OAuth 2.0 Login.
This section shows how to configure the OAuth 2.0 Login sample using Google as the Authentication Provider and covers the following topics:
To use Google’s OAuth 2.0 authentication system for login, you must set up a project in the Google API Console to obtain OAuth 2.0 credentials.
Note | |
---|---|
Google’s OAuth 2.0 implementation for authentication conforms to the OpenID Connect 1.0 specification and is OpenID Certified. |
Follow the instructions on the OpenID Connect page, starting in the section, "Setting up OAuth 2.0".
After completing the "Obtain OAuth 2.0 credentials" instructions, you should have a new OAuth Client with credentials consisting of a Client ID and a Client Secret.
The redirect URI is the path in the application that the end-user’s user-agent is redirected back to after they have authenticated with Google and have granted access to the OAuth Client (created in the previous step) on the Consent page.
In the "Set a redirect URI" sub-section, ensure that the Authorized redirect URIs field is set to http://localhost:8080/login/oauth2/code/google
.
Tip | |
---|---|
The default redirect URI template is |
Important | |
---|---|
If the OAuth Client is running behind a proxy server, it is recommended to check Proxy Server Configuration to ensure the application is correctly configured.
Also, see the supported |
Now that you have a new OAuth Client with Google, you need to configure the application to use the OAuth Client for the authentication flow. To do so:
Go to application.yml
and set the following configuration:
spring: security: oauth2: client: registration: google: client-id: google-client-id client-secret: google-client-secret
Example 12.1. OAuth Client properties
| |
Following the base property prefix is the ID for the ClientRegistration, such as google. |
client-id
and client-secret
property with the OAuth 2.0 credentials you created earlier.
Launch the Spring Boot 2.x sample and go to http://localhost:8080
.
You are then redirected to the default auto-generated login page, which displays a link for Google.
Click on the Google link, and you are then redirected to Google for authentication.
After authenticating with your Google account credentials, the next page presented to you is the Consent screen. The Consent screen asks you to either allow or deny access to the OAuth Client you created earlier. Click Allow to authorize the OAuth Client to access your email address and basic profile information.
At this point, the OAuth Client retrieves your email address and basic profile information from the UserInfo Endpoint and establishes an authenticated session.
The following table outlines the mapping of the Spring Boot 2.x OAuth Client properties to the ClientRegistration properties.
Spring Boot 2.x | ClientRegistration |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tip | |
---|---|
A |
CommonOAuth2Provider
pre-defines a set of default client properties for a number of well known providers: Google, GitHub, Facebook, and Okta.
For example, the authorization-uri
, token-uri
, and user-info-uri
do not change often for a Provider.
Therefore, it makes sense to provide default values in order to reduce the required configuration.
As demonstrated previously, when we configured a Google client, only the client-id
and client-secret
properties are required.
The following listing shows an example:
spring: security: oauth2: client: registration: google: client-id: google-client-id client-secret: google-client-secret
Tip | |
---|---|
The auto-defaulting of client properties works seamlessly here because the |
For cases where you may want to specify a different registrationId
, such as google-login
, you can still leverage auto-defaulting of client properties by configuring the provider
property.
The following listing shows an example:
spring: security: oauth2: client: registration: google-login: provider: google client-id: google-client-id client-secret: google-client-secret
There are some OAuth 2.0 Providers that support multi-tenancy, which results in different protocol endpoints for each tenant (or sub-domain).
For example, an OAuth Client registered with Okta is assigned to a specific sub-domain and have their own protocol endpoints.
For these cases, Spring Boot 2.x provides the following base property for configuring custom provider properties: spring.security.oauth2.client.provider.[providerId]
.
The following listing shows an example:
spring: security: oauth2: client: registration: okta: client-id: okta-client-id client-secret: okta-client-secret provider: okta: authorization-uri: https://your-subdomain.oktapreview.com/oauth2/v1/authorize token-uri: https://your-subdomain.oktapreview.com/oauth2/v1/token user-info-uri: https://your-subdomain.oktapreview.com/oauth2/v1/userinfo user-name-attribute: sub jwk-set-uri: https://your-subdomain.oktapreview.com/oauth2/v1/keys
The Spring Boot 2.x auto-configuration class for OAuth Client support is OAuth2ClientAutoConfiguration
.
It performs the following tasks:
ClientRegistrationRepository
@Bean
composed of ClientRegistration
(s) from the configured OAuth Client properties.
WebSecurityConfigurerAdapter
@Configuration
and enables OAuth 2.0 Login through httpSecurity.oauth2Login()
.
If you need to override the auto-configuration based on your specific requirements, you may do so in the following ways:
The following example shows how to register a ClientRegistrationRepository
@Bean
:
@Configuration public class OAuth2LoginConfig { @Bean public ClientRegistrationRepository clientRegistrationRepository() { return new InMemoryClientRegistrationRepository(this.googleClientRegistration()); } private ClientRegistration googleClientRegistration() { return ClientRegistration.withRegistrationId("google") .clientId("google-client-id") .clientSecret("google-client-secret") .clientAuthenticationMethod(ClientAuthenticationMethod.BASIC) .authorizationGrantType(AuthorizationGrantType.AUTHORIZATION_CODE) .redirectUriTemplate("{baseUrl}/login/oauth2/code/{registrationId}") .scope("openid", "profile", "email", "address", "phone") .authorizationUri("https://accounts.google.com/o/oauth2/v2/auth") .tokenUri("https://www.googleapis.com/oauth2/v4/token") .userInfoUri("https://www.googleapis.com/oauth2/v3/userinfo") .userNameAttributeName(IdTokenClaimNames.SUB) .jwkSetUri("https://www.googleapis.com/oauth2/v3/certs") .clientName("Google") .build(); } }
The following example shows how to provide a WebSecurityConfigurerAdapter
with @EnableWebSecurity
and enable OAuth 2.0 login through httpSecurity.oauth2Login()
:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() ) .oauth2Login(withDefaults()); } }
The following example shows how to completely override the auto-configuration by registering a ClientRegistrationRepository
@Bean
and providing a WebSecurityConfigurerAdapter
.
@Configuration public class OAuth2LoginConfig { @EnableWebSecurity public static class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() ) .oauth2Login(withDefaults()); } } @Bean public ClientRegistrationRepository clientRegistrationRepository() { return new InMemoryClientRegistrationRepository(this.googleClientRegistration()); } private ClientRegistration googleClientRegistration() { return ClientRegistration.withRegistrationId("google") .clientId("google-client-id") .clientSecret("google-client-secret") .clientAuthenticationMethod(ClientAuthenticationMethod.BASIC) .authorizationGrantType(AuthorizationGrantType.AUTHORIZATION_CODE) .redirectUriTemplate("{baseUrl}/login/oauth2/code/{registrationId}") .scope("openid", "profile", "email", "address", "phone") .authorizationUri("https://accounts.google.com/o/oauth2/v2/auth") .tokenUri("https://www.googleapis.com/oauth2/v4/token") .userInfoUri("https://www.googleapis.com/oauth2/v3/userinfo") .userNameAttributeName(IdTokenClaimNames.SUB) .jwkSetUri("https://www.googleapis.com/oauth2/v3/certs") .clientName("Google") .build(); } }
If you are not able to use Spring Boot 2.x and would like to configure one of the pre-defined providers in CommonOAuth2Provider
(for example, Google), apply the following configuration:
@Configuration public class OAuth2LoginConfig { @EnableWebSecurity public static class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() ) .oauth2Login(withDefaults()); } } @Bean public ClientRegistrationRepository clientRegistrationRepository() { return new InMemoryClientRegistrationRepository(this.googleClientRegistration()); } @Bean public OAuth2AuthorizedClientService authorizedClientService( ClientRegistrationRepository clientRegistrationRepository) { return new InMemoryOAuth2AuthorizedClientService(clientRegistrationRepository); } @Bean public OAuth2AuthorizedClientRepository authorizedClientRepository( OAuth2AuthorizedClientService authorizedClientService) { return new AuthenticatedPrincipalOAuth2AuthorizedClientRepository(authorizedClientService); } private ClientRegistration googleClientRegistration() { return CommonOAuth2Provider.GOOGLE.getBuilder("google") .clientId("google-client-id") .clientSecret("google-client-secret") .build(); } }
HttpSecurity.oauth2Login()
provides a number of configuration options for customizing OAuth 2.0 Login.
The main configuration options are grouped into their protocol endpoint counterparts.
For example, oauth2Login().authorizationEndpoint()
allows configuring the Authorization Endpoint, whereas oauth2Login().tokenEndpoint()
allows configuring the Token Endpoint.
The following code shows an example:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .authorizationEndpoint(authorizationEndpoint -> authorizationEndpoint ... ) .redirectionEndpoint(redirectionEndpoint -> redirectionEndpoint ... ) .tokenEndpoint(tokenEndpoint -> tokenEndpoint ... ) .userInfoEndpoint(userInfoEndpoint -> userInfoEndpoint ... ) ); } }
The main goal of the oauth2Login()
DSL was to closely align with the naming, as defined in the specifications.
The OAuth 2.0 Authorization Framework defines the Protocol Endpoints as follows:
The authorization process utilizes two authorization server endpoints (HTTP resources):
As well as one client endpoint:
The OpenID Connect Core 1.0 specification defines the UserInfo Endpoint as follows:
The UserInfo Endpoint is an OAuth 2.0 Protected Resource that returns claims about the authenticated end-user. To obtain the requested claims about the end-user, the client makes a request to the UserInfo Endpoint by using an access token obtained through OpenID Connect Authentication. These claims are normally represented by a JSON object that contains a collection of name-value pairs for the claims.
The following code shows the complete configuration options available for the oauth2Login()
DSL:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .clientRegistrationRepository(this.clientRegistrationRepository()) .authorizedClientRepository(this.authorizedClientRepository()) .authorizedClientService(this.authorizedClientService()) .loginPage("/login") .authorizationEndpoint(authorizationEndpoint -> authorizationEndpoint .baseUri(this.authorizationRequestBaseUri()) .authorizationRequestRepository(this.authorizationRequestRepository()) .authorizationRequestResolver(this.authorizationRequestResolver()) ) .redirectionEndpoint(redirectionEndpoint -> redirectionEndpoint .baseUri(this.authorizationResponseBaseUri()) ) .tokenEndpoint(tokenEndpoint -> tokenEndpoint .accessTokenResponseClient(this.accessTokenResponseClient()) ) .userInfoEndpoint(userInfoEndpoint -> userInfoEndpoint .userAuthoritiesMapper(this.userAuthoritiesMapper()) .userService(this.oauth2UserService()) .oidcUserService(this.oidcUserService()) .customUserType(GitHubOAuth2User.class, "github") ) ); } }
The following sections go into more detail on each of the configuration options available:
By default, the OAuth 2.0 Login Page is auto-generated by the DefaultLoginPageGeneratingFilter
.
The default login page shows each configured OAuth Client with its ClientRegistration.clientName
as a link, which is capable of initiating the Authorization Request (or OAuth 2.0 Login).
Note | |
---|---|
In order for |
The link’s destination for each OAuth Client defaults to the following:
OAuth2AuthorizationRequestRedirectFilter.DEFAULT_AUTHORIZATION_REQUEST_BASE_URI
+ "/{registrationId}"
The following line shows an example:
<a href="/oauth2/authorization/google">Google</a>
To override the default login page, configure oauth2Login().loginPage()
and (optionally) oauth2Login().authorizationEndpoint().baseUri()
.
The following listing shows an example:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .loginPage("/login/oauth2") ... .authorizationEndpoint(authorizationEndpoint -> authorizationEndpoint .baseUri("/login/oauth2/authorization") ... ) ); } }
Important | |
---|---|
You need to provide a |
Tip | |
---|---|
As noted earlier, configuring The following line shows an example: <a href="/login/oauth2/authorization/google">Google</a> |
The Redirection Endpoint is used by the Authorization Server for returning the Authorization Response (which contains the authorization credentials) to the client via the Resource Owner user-agent.
Tip | |
---|---|
OAuth 2.0 Login leverages the Authorization Code Grant. Therefore, the authorization credential is the authorization code. |
The default Authorization Response baseUri
(redirection endpoint) is /login/oauth2/code/*
, which is defined in OAuth2LoginAuthenticationFilter.DEFAULT_FILTER_PROCESSES_URI
.
If you would like to customize the Authorization Response baseUri
, configure it as shown in the following example:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .redirectionEndpoint(redirectionEndpoint -> redirectionEndpoint .baseUri("/login/oauth2/callback/*") ... ) ); } }
Important | |
---|---|
You also need to ensure the The following listing shows an example: return CommonOAuth2Provider.GOOGLE.getBuilder("google") .clientId("google-client-id") .clientSecret("google-client-secret") .redirectUriTemplate("{baseUrl}/login/oauth2/callback/{registrationId}") .build(); |
The UserInfo Endpoint includes a number of configuration options, as described in the following sub-sections:
After the user successfully authenticates with the OAuth 2.0 Provider, the OAuth2User.getAuthorities()
(or OidcUser.getAuthorities()
) may be mapped to a new set of GrantedAuthority
instances, which will be supplied to OAuth2AuthenticationToken
when completing the authentication.
Tip | |
---|---|
|
There are a couple of options to choose from when mapping user authorities:
Provide an implementation of GrantedAuthoritiesMapper
and configure it as shown in the following example:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .userInfoEndpoint(userInfoEndpoint -> userInfoEndpoint .userAuthoritiesMapper(this.userAuthoritiesMapper()) ... ) ); } private GrantedAuthoritiesMapper userAuthoritiesMapper() { return (authorities) -> { Set<GrantedAuthority> mappedAuthorities = new HashSet<>(); authorities.forEach(authority -> { if (OidcUserAuthority.class.isInstance(authority)) { OidcUserAuthority oidcUserAuthority = (OidcUserAuthority)authority; OidcIdToken idToken = oidcUserAuthority.getIdToken(); OidcUserInfo userInfo = oidcUserAuthority.getUserInfo(); // Map the claims found in idToken and/or userInfo // to one or more GrantedAuthority's and add it to mappedAuthorities } else if (OAuth2UserAuthority.class.isInstance(authority)) { OAuth2UserAuthority oauth2UserAuthority = (OAuth2UserAuthority)authority; Map<String, Object> userAttributes = oauth2UserAuthority.getAttributes(); // Map the attributes found in userAttributes // to one or more GrantedAuthority's and add it to mappedAuthorities } }); return mappedAuthorities; }; } }
Alternatively, you may register a GrantedAuthoritiesMapper
@Bean
to have it automatically applied to the configuration, as shown in the following example:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(withDefaults()); } @Bean public GrantedAuthoritiesMapper userAuthoritiesMapper() { ... } }
This strategy is advanced compared to using a GrantedAuthoritiesMapper
, however, it’s also more flexible as it gives you access to the OAuth2UserRequest
and OAuth2User
(when using an OAuth 2.0 UserService) or OidcUserRequest
and OidcUser
(when using an OpenID Connect 1.0 UserService).
The OAuth2UserRequest
(and OidcUserRequest
) provides you access to the associated OAuth2AccessToken
, which is very useful in the cases where the delegator needs to fetch authority information from a protected resource before it can map the custom authorities for the user.
The following example shows how to implement and configure a delegation-based strategy using an OpenID Connect 1.0 UserService:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .userInfoEndpoint(userInfoEndpoint -> userInfoEndpoint .oidcUserService(this.oidcUserService()) ... ) ); } private OAuth2UserService<OidcUserRequest, OidcUser> oidcUserService() { final OidcUserService delegate = new OidcUserService(); return (userRequest) -> { // Delegate to the default implementation for loading a user OidcUser oidcUser = delegate.loadUser(userRequest); OAuth2AccessToken accessToken = userRequest.getAccessToken(); Set<GrantedAuthority> mappedAuthorities = new HashSet<>(); // TODO // 1) Fetch the authority information from the protected resource using accessToken // 2) Map the authority information to one or more GrantedAuthority's and add it to mappedAuthorities // 3) Create a copy of oidcUser but use the mappedAuthorities instead oidcUser = new DefaultOidcUser(mappedAuthorities, oidcUser.getIdToken(), oidcUser.getUserInfo()); return oidcUser; }; } }
CustomUserTypesOAuth2UserService
is an implementation of an OAuth2UserService
that provides support for custom OAuth2User
types.
If the default implementation (DefaultOAuth2User
) does not suit your needs, you can define your own implementation of OAuth2User
.
The following code demonstrates how you would register a custom OAuth2User
type for GitHub:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .userInfoEndpoint(userInfoEndpoint -> userInfoEndpoint .customUserType(GitHubOAuth2User.class, "github") ... ) ); } }
The following code shows an example of a custom OAuth2User
type for GitHub:
public class GitHubOAuth2User implements OAuth2User { private List<GrantedAuthority> authorities = AuthorityUtils.createAuthorityList("ROLE_USER"); private Map<String, Object> attributes; private String id; private String name; private String login; private String email; @Override public Collection<? extends GrantedAuthority> getAuthorities() { return this.authorities; } @Override public Map<String, Object> getAttributes() { if (this.attributes == null) { this.attributes = new HashMap<>(); this.attributes.put("id", this.getId()); this.attributes.put("name", this.getName()); this.attributes.put("login", this.getLogin()); this.attributes.put("email", this.getEmail()); } return attributes; } public String getId() { return this.id; } public void setId(String id) { this.id = id; } @Override public String getName() { return this.name; } public void setName(String name) { this.name = name; } public String getLogin() { return this.login; } public void setLogin(String login) { this.login = login; } public String getEmail() { return this.email; } public void setEmail(String email) { this.email = email; } }
Tip | |
---|---|
|
DefaultOAuth2UserService
is an implementation of an OAuth2UserService
that supports standard OAuth 2.0 Provider’s.
Note | |
---|---|
|
DefaultOAuth2UserService
uses a RestOperations
when requesting the user attributes at the UserInfo Endpoint.
If you need to customize the pre-processing of the UserInfo Request, you can provide DefaultOAuth2UserService.setRequestEntityConverter()
with a custom Converter<OAuth2UserRequest, RequestEntity<?>>
.
The default implementation OAuth2UserRequestEntityConverter
builds a RequestEntity
representation of a UserInfo Request that sets the OAuth2AccessToken
in the Authorization
header by default.
On the other end, if you need to customize the post-handling of the UserInfo Response, you will need to provide DefaultOAuth2UserService.setRestOperations()
with a custom configured RestOperations
.
The default RestOperations
is configured as follows:
RestTemplate restTemplate = new RestTemplate(); restTemplate.setErrorHandler(new OAuth2ErrorResponseErrorHandler());
OAuth2ErrorResponseErrorHandler
is a ResponseErrorHandler
that can handle an OAuth 2.0 Error (400 Bad Request).
It uses an OAuth2ErrorHttpMessageConverter
for converting the OAuth 2.0 Error parameters to an OAuth2Error
.
Whether you customize DefaultOAuth2UserService
or provide your own implementation of OAuth2UserService
, you’ll need to configure it as shown in the following example:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .userInfoEndpoint(userInfoEndpoint -> userInfoEndpoint .userService(this.oauth2UserService()) ... ) ); } private OAuth2UserService<OAuth2UserRequest, OAuth2User> oauth2UserService() { ... } }
OidcUserService
is an implementation of an OAuth2UserService
that supports OpenID Connect 1.0 Provider’s.
The OidcUserService
leverages the DefaultOAuth2UserService
when requesting the user attributes at the UserInfo Endpoint.
If you need to customize the pre-processing of the UserInfo Request and/or the post-handling of the UserInfo Response, you will need to provide OidcUserService.setOauth2UserService()
with a custom configured DefaultOAuth2UserService
.
Whether you customize OidcUserService
or provide your own implementation of OAuth2UserService
for OpenID Connect 1.0 Provider’s, you’ll need to configure it as shown in the following example:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Login(oauth2Login -> oauth2Login .userInfoEndpoint(userInfoEndpoint -> userInfoEndpoint .oidcUserService(this.oidcUserService()) ... ) ); } private OAuth2UserService<OidcUserRequest, OidcUser> oidcUserService() { ... } }
OpenID Connect 1.0 Authentication introduces the ID Token, which is a security token that contains Claims about the Authentication of an End-User by an Authorization Server when used by a Client.
The ID Token is represented as a JSON Web Token (JWT) and MUST be signed using JSON Web Signature (JWS).
The OidcIdTokenDecoderFactory
provides a JwtDecoder
used for OidcIdToken
signature verification. The default algorithm is RS256
but may be different when assigned during client registration.
For these cases, a resolver may be configured to return the expected JWS algorithm assigned for a specific client.
The JWS algorithm resolver is a Function
that accepts a ClientRegistration
and returns the expected JwsAlgorithm
for the client, eg. SignatureAlgorithm.RS256
or MacAlgorithm.HS256
The following code shows how to configure the OidcIdTokenDecoderFactory
@Bean
to default to MacAlgorithm.HS256
for all ClientRegistration
:
@Bean public JwtDecoderFactory<ClientRegistration> idTokenDecoderFactory() { OidcIdTokenDecoderFactory idTokenDecoderFactory = new OidcIdTokenDecoderFactory(); idTokenDecoderFactory.setJwsAlgorithmResolver(clientRegistration -> MacAlgorithm.HS256); return idTokenDecoderFactory; }
Note | |
---|---|
For MAC based algorithms such as |
Tip | |
---|---|
If more than one |
OpenID Connect Session Management 1.0 allows the ability to log out the End-User at the Provider using the Client. One of the strategies available is RP-Initiated Logout.
If the OpenID Provider supports both Session Management and Discovery, the client may obtain the end_session_endpoint
URL
from the OpenID Provider’s Discovery Metadata.
This can be achieved by configuring the ClientRegistration
with the issuer-uri
, as in the following example:
spring: security: oauth2: client: registration: okta: client-id: okta-client-id client-secret: okta-client-secret ... provider: okta: issuer-uri: https://dev-1234.oktapreview.com
…and the OidcClientInitiatedLogoutSuccessHandler
, which implements RP-Initiated Logout, may be configured as follows:
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Autowired private ClientRegistrationRepository clientRegistrationRepository; @Override protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() ) .oauth2Login(withDefaults()) .logout(logout -> logout .logoutSuccessHandler(oidcLogoutSuccessHandler()) ); } private LogoutSuccessHandler oidcLogoutSuccessHandler() { OidcClientInitiatedLogoutSuccessHandler oidcLogoutSuccessHandler = new OidcClientInitiatedLogoutSuccessHandler(this.clientRegistrationRepository); // Sets the `URI` that the End-User's User Agent will be redirected to // after the logout has been performed at the Provider oidcLogoutSuccessHandler.setPostLogoutRedirectUri(URI.create("https://localhost:8080")); return oidcLogoutSuccessHandler; } }
The OAuth 2.0 Client features provide support for the Client role as defined in the OAuth 2.0 Authorization Framework.
At a high-level, the core features available are:
Authorization Grant support
HTTP Client support
WebClient
integration for Servlet Environments (for requesting protected resources)
The HttpSecurity.oauth2Client()
DSL provides a number of configuration options for customizing the core components used by OAuth 2.0 Client.
In addition, HttpSecurity.oauth2Client().authorizationCodeGrant()
enables the customization of the Authorization Code grant.
The following code shows the complete configuration options provided by the HttpSecurity.oauth2Client()
DSL:
@EnableWebSecurity public class OAuth2ClientSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Client(oauth2Client -> oauth2Client .clientRegistrationRepository(this.clientRegistrationRepository()) .authorizedClientRepository(this.authorizedClientRepository()) .authorizedClientService(this.authorizedClientService()) .authorizationCodeGrant(authorizationCodeGrant -> authorizationCodeGrant .authorizationRequestRepository(this.authorizationRequestRepository()) .authorizationRequestResolver(this.authorizationRequestResolver()) .accessTokenResponseClient(this.accessTokenResponseClient()) ) ); } }
The OAuth2AuthorizedClientManager
is responsible for managing the authorization (or re-authorization) of an OAuth 2.0 Client, in collaboration with one or more OAuth2AuthorizedClientProvider
(s).
The following code shows an example of how to register an OAuth2AuthorizedClientManager
@Bean
and associate it with an OAuth2AuthorizedClientProvider
composite that provides support for the authorization_code
, refresh_token
, client_credentials
and password
authorization grant types:
@Bean public OAuth2AuthorizedClientManager authorizedClientManager( ClientRegistrationRepository clientRegistrationRepository, OAuth2AuthorizedClientRepository authorizedClientRepository) { OAuth2AuthorizedClientProvider authorizedClientProvider = OAuth2AuthorizedClientProviderBuilder.builder() .authorizationCode() .refreshToken() .clientCredentials() .password() .build(); DefaultOAuth2AuthorizedClientManager authorizedClientManager = new DefaultOAuth2AuthorizedClientManager( clientRegistrationRepository, authorizedClientRepository); authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider); return authorizedClientManager; }
The following sections will go into more detail on the core components used by OAuth 2.0 Client and the configuration options available:
ClientRegistration
is a representation of a client registered with an OAuth 2.0 or OpenID Connect 1.0 Provider.
A client registration holds information, such as client id, client secret, authorization grant type, redirect URI, scope(s), authorization URI, token URI, and other details.
ClientRegistration
and its properties are defined as follows:
public final class ClientRegistration { private String registrationId; private String clientId; private String clientSecret; private ClientAuthenticationMethod clientAuthenticationMethod; private AuthorizationGrantType authorizationGrantType; private String redirectUriTemplate; private Set<String> scopes; private ProviderDetails providerDetails; private String clientName; public class ProviderDetails { private String authorizationUri; private String tokenUri; private UserInfoEndpoint userInfoEndpoint; private String jwkSetUri; private Map<String, Object> configurationMetadata; public class UserInfoEndpoint { private String uri; private AuthenticationMethod authenticationMethod; private String userNameAttributeName; } } }
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|
A ClientRegistration
can be initially configured using discovery of an OpenID Connect Provider’s Configuration endpoint or an Authorization Server’s Metadata endpoint.
ClientRegistrations
provides convenience methods for configuring a ClientRegistration
in this way, as can be seen in the following example:
ClientRegistration clientRegistration =
ClientRegistrations.fromIssuerLocation("https://idp.example.com/issuer").build();
The above code will query in series https://idp.example.com/issuer/.well-known/openid-configuration
, and then https://idp.example.com/.well-known/openid-configuration/issuer
, and finally https://idp.example.com/.well-known/oauth-authorization-server/issuer
, stopping at the first to return a 200 response.
As an alternative, you can use ClientRegistrations.fromOidcIssuerLocation()
to only query the OpenID Connect Provider’s Configuration endpoint.
The ClientRegistrationRepository
serves as a repository for OAuth 2.0 / OpenID Connect 1.0 ClientRegistration
(s).
Note | |
---|---|
Client registration information is ultimately stored and owned by the associated Authorization Server. This repository provides the ability to retrieve a sub-set of the primary client registration information, which is stored with the Authorization Server. |
Spring Boot 2.x auto-configuration binds each of the properties under spring.security.oauth2.client.registration.[registrationId]
to an instance of ClientRegistration
and then composes each of the ClientRegistration
instance(s) within a ClientRegistrationRepository
.
Note | |
---|---|
The default implementation of |
The auto-configuration also registers the ClientRegistrationRepository
as a @Bean
in the ApplicationContext
so that it is available for dependency-injection, if needed by the application.
The following listing shows an example:
@Controller public class OAuth2ClientController { @Autowired private ClientRegistrationRepository clientRegistrationRepository; @GetMapping("/") public String index() { ClientRegistration oktaRegistration = this.clientRegistrationRepository.findByRegistrationId("okta"); ... return "index"; } }
OAuth2AuthorizedClient
is a representation of an Authorized Client.
A client is considered to be authorized when the end-user (Resource Owner) has granted authorization to the client to access its protected resources.
OAuth2AuthorizedClient
serves the purpose of associating an OAuth2AccessToken
(and optional OAuth2RefreshToken
) to a ClientRegistration
(client) and resource owner, who is the Principal
end-user that granted the authorization.
OAuth2AuthorizedClientRepository
is responsible for persisting OAuth2AuthorizedClient
(s) between web requests.
Whereas, the primary role of OAuth2AuthorizedClientService
is to manage OAuth2AuthorizedClient
(s) at the application-level.
From a developer perspective, the OAuth2AuthorizedClientRepository
or OAuth2AuthorizedClientService
provides the capability to lookup an OAuth2AccessToken
associated with a client so that it may be used to initiate a protected resource request.
The following listing shows an example:
@Controller public class OAuth2ClientController { @Autowired private OAuth2AuthorizedClientService authorizedClientService; @GetMapping("/") public String index(Authentication authentication) { OAuth2AuthorizedClient authorizedClient = this.authorizedClientService.loadAuthorizedClient("okta", authentication.getName()); OAuth2AccessToken accessToken = authorizedClient.getAccessToken(); ... return "index"; } }
Note | |
---|---|
Spring Boot 2.x auto-configuration registers an |
The OAuth2AuthorizedClientManager
is responsible for the overall management of OAuth2AuthorizedClient
(s).
The primary responsibilities include:
OAuth2AuthorizedClientProvider
.
OAuth2AuthorizedClient
, typically using an OAuth2AuthorizedClientService
or OAuth2AuthorizedClientRepository
.
An OAuth2AuthorizedClientProvider
implements a strategy for authorizing (or re-authorizing) an OAuth 2.0 Client.
Implementations will typically implement an authorization grant type, eg. authorization_code
, client_credentials
, etc.
The default implementation of OAuth2AuthorizedClientManager
is DefaultOAuth2AuthorizedClientManager
, which is associated with an OAuth2AuthorizedClientProvider
that may support multiple authorization grant types using a delegation-based composite.
The OAuth2AuthorizedClientProviderBuilder
may be used to configure and build the delegation-based composite.
The following code shows an example of how to configure and build an OAuth2AuthorizedClientProvider
composite that provides support for the authorization_code
, refresh_token
, client_credentials
and password
authorization grant types:
@Bean public OAuth2AuthorizedClientManager authorizedClientManager( ClientRegistrationRepository clientRegistrationRepository, OAuth2AuthorizedClientRepository authorizedClientRepository) { OAuth2AuthorizedClientProvider authorizedClientProvider = OAuth2AuthorizedClientProviderBuilder.builder() .authorizationCode() .refreshToken() .clientCredentials() .password() .build(); DefaultOAuth2AuthorizedClientManager authorizedClientManager = new DefaultOAuth2AuthorizedClientManager( clientRegistrationRepository, authorizedClientRepository); authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider); return authorizedClientManager; }
The DefaultOAuth2AuthorizedClientManager
is also associated with a contextAttributesMapper
of type Function<OAuth2AuthorizeRequest, Map<String, Object>>
, which is responsible for mapping attribute(s) from the OAuth2AuthorizeRequest
to a Map
of attributes to be associated to the OAuth2AuthorizationContext
.
This can be useful when you need to supply an OAuth2AuthorizedClientProvider
with required (supported) attribute(s), eg. the PasswordOAuth2AuthorizedClientProvider
requires the resource owner’s username
and password
to be available in OAuth2AuthorizationContext.getAttributes()
.
The following code shows an example of the contextAttributesMapper
:
@Bean public OAuth2AuthorizedClientManager authorizedClientManager( ClientRegistrationRepository clientRegistrationRepository, OAuth2AuthorizedClientRepository authorizedClientRepository) { OAuth2AuthorizedClientProvider authorizedClientProvider = OAuth2AuthorizedClientProviderBuilder.builder() .password() .refreshToken() .build(); DefaultOAuth2AuthorizedClientManager authorizedClientManager = new DefaultOAuth2AuthorizedClientManager( clientRegistrationRepository, authorizedClientRepository); authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider); // Assuming the `username` and `password` are supplied as `HttpServletRequest` parameters, // map the `HttpServletRequest` parameters to `OAuth2AuthorizationContext.getAttributes()` authorizedClientManager.setContextAttributesMapper(contextAttributesMapper()); return authorizedClientManager; } private Function<OAuth2AuthorizeRequest, Map<String, Object>> contextAttributesMapper() { return authorizeRequest -> { Map<String, Object> contextAttributes = Collections.emptyMap(); HttpServletRequest servletRequest = authorizeRequest.getAttribute(HttpServletRequest.class.getName()); String username = servletRequest.getParameter(OAuth2ParameterNames.USERNAME); String password = servletRequest.getParameter(OAuth2ParameterNames.PASSWORD); if (StringUtils.hasText(username) && StringUtils.hasText(password)) { contextAttributes = new HashMap<>(); // `PasswordOAuth2AuthorizedClientProvider` requires both attributes contextAttributes.put(OAuth2AuthorizationContext.USERNAME_ATTRIBUTE_NAME, username); contextAttributes.put(OAuth2AuthorizationContext.PASSWORD_ATTRIBUTE_NAME, password); } return contextAttributes; }; }
The DefaultOAuth2AuthorizedClientManager
is designed to be used within the context of a HttpServletRequest
.
When operating outside of a HttpServletRequest
context, use AuthorizedClientServiceOAuth2AuthorizedClientManager
instead.
A service application is a common use case for when to use an AuthorizedClientServiceOAuth2AuthorizedClientManager
.
Service applications often run in the background, without any user interaction, and typically run under a system-level account instead of a user account.
An OAuth 2.0 Client configured with the client_credentials
grant type can be considered a type of service application.
The following code shows an example of how to configure an AuthorizedClientServiceOAuth2AuthorizedClientManager
that provides support for the client_credentials
grant type:
@Bean public OAuth2AuthorizedClientManager authorizedClientManager( ClientRegistrationRepository clientRegistrationRepository, OAuth2AuthorizedClientService authorizedClientService) { OAuth2AuthorizedClientProvider authorizedClientProvider = OAuth2AuthorizedClientProviderBuilder.builder() .clientCredentials() .build(); AuthorizedClientServiceOAuth2AuthorizedClientManager authorizedClientManager = new AuthorizedClientServiceOAuth2AuthorizedClientManager( clientRegistrationRepository, authorizedClientService); authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider); return authorizedClientManager; }
Note | |
---|---|
Please refer to the OAuth 2.0 Authorization Framework for further details on the Authorization Code grant. |
Note | |
---|---|
Please refer to the Authorization Request/Response protocol flow for the Authorization Code grant. |
The OAuth2AuthorizationRequestRedirectFilter
uses an OAuth2AuthorizationRequestResolver
to resolve an OAuth2AuthorizationRequest
and initiate the Authorization Code grant flow by redirecting the end-user’s user-agent to the Authorization Server’s Authorization Endpoint.
The primary role of the OAuth2AuthorizationRequestResolver
is to resolve an OAuth2AuthorizationRequest
from the provided web request.
The default implementation DefaultOAuth2AuthorizationRequestResolver
matches on the (default) path /oauth2/authorization/{registrationId}
extracting the registrationId
and using it to build the OAuth2AuthorizationRequest
for the associated ClientRegistration
.
Given the following Spring Boot 2.x properties for an OAuth 2.0 Client registration:
spring: security: oauth2: client: registration: okta: client-id: okta-client-id client-secret: okta-client-secret authorization-grant-type: authorization_code redirect-uri: "{baseUrl}/authorized/okta" scope: read, write provider: okta: authorization-uri: https://dev-1234.oktapreview.com/oauth2/v1/authorize token-uri: https://dev-1234.oktapreview.com/oauth2/v1/token
A request with the base path /oauth2/authorization/okta
will initiate the Authorization Request redirect by the OAuth2AuthorizationRequestRedirectFilter
and ultimately start the Authorization Code grant flow.
Note | |
---|---|
The |
If the OAuth 2.0 Client is a Public Client, then configure the OAuth 2.0 Client registration as follows:
spring: security: oauth2: client: registration: okta: client-id: okta-client-id client-authentication-method: none authorization-grant-type: authorization_code redirect-uri: "{baseUrl}/authorized/okta" ...
Public Clients are supported using Proof Key for Code Exchange (PKCE). If the client is running in an untrusted environment (eg. native application or web browser-based application) and therefore incapable of maintaining the confidentiality of it’s credentials, PKCE will automatically be used when the following conditions are true:
client-secret
is omitted (or empty)
client-authentication-method
is set to "none" (ClientAuthenticationMethod.NONE
)
The DefaultOAuth2AuthorizationRequestResolver
also supports URI
template variables for the redirect-uri
using UriComponentsBuilder
.
The following configuration uses all the supported URI
template variables:
spring: security: oauth2: client: registration: okta: ... redirect-uri: "{baseScheme}://{baseHost}{basePort}{basePath}/authorized/{registrationId}" ...
Note | |
---|---|
|
Configuring the redirect-uri
with URI
template variables is especially useful when the OAuth 2.0 Client is running behind a Proxy Server.
This ensures that the X-Forwarded-*
headers are used when expanding the redirect-uri
.
One of the primary use cases an OAuth2AuthorizationRequestResolver
can realize is the ability to customize the Authorization Request with additional parameters above the standard parameters defined in the OAuth 2.0 Authorization Framework.
For example, OpenID Connect defines additional OAuth 2.0 request parameters for the Authorization Code Flow extending from the standard parameters defined in the OAuth 2.0 Authorization Framework.
One of those extended parameters is the prompt
parameter.
Note | |
---|---|
OPTIONAL. Space delimited, case sensitive list of ASCII string values that specifies whether the Authorization Server prompts the End-User for reauthentication and consent. The defined values are: none, login, consent, select_account |
The following example shows how to implement an OAuth2AuthorizationRequestResolver
that customizes the Authorization Request for oauth2Login()
, by including the request parameter prompt=consent
.
@EnableWebSecurity public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter { @Autowired private ClientRegistrationRepository clientRegistrationRepository; @Override protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() ) .oauth2Login(oauth2Login -> oauth2Login .authorizationEndpoint(authorizationEndpoint -> authorizationEndpoint .authorizationRequestResolver( new CustomAuthorizationRequestResolver( this.clientRegistrationRepository)) ) ); } } public class CustomAuthorizationRequestResolver implements OAuth2AuthorizationRequestResolver { private final OAuth2AuthorizationRequestResolver defaultAuthorizationRequestResolver; public CustomAuthorizationRequestResolver( ClientRegistrationRepository clientRegistrationRepository) { this.defaultAuthorizationRequestResolver = new DefaultOAuth2AuthorizationRequestResolver( clientRegistrationRepository, "/oauth2/authorization"); } @Override public OAuth2AuthorizationRequest resolve(HttpServletRequest request) { OAuth2AuthorizationRequest authorizationRequest = this.defaultAuthorizationRequestResolver.resolve(request); return authorizationRequest != null ? customAuthorizationRequest(authorizationRequest) : null; } @Override public OAuth2AuthorizationRequest resolve( HttpServletRequest request, String clientRegistrationId) { OAuth2AuthorizationRequest authorizationRequest = this.defaultAuthorizationRequestResolver.resolve( request, clientRegistrationId); return authorizationRequest != null ? customAuthorizationRequest(authorizationRequest) : null; } private OAuth2AuthorizationRequest customAuthorizationRequest( OAuth2AuthorizationRequest authorizationRequest) { Map<String, Object> additionalParameters = new LinkedHashMap<>(authorizationRequest.getAdditionalParameters()); additionalParameters.put("prompt", "consent"); return OAuth2AuthorizationRequest.from(authorizationRequest) .additionalParameters(additionalParameters) .build(); } }
Configure the custom | |
Attempt to resolve the | |
If an | |
Add custom parameters to the existing | |
Create a copy of the default | |
Override the default |
Tip | |
---|---|
|
For the simple use case, where the additional request parameter is always the same for a specific provider, it can be added directly in the authorization-uri
.
For example, if the value for the request parameter prompt
is always consent
for the provider okta
, than simply configure as follows:
spring: security: oauth2: client: provider: okta: authorization-uri: https://dev-1234.oktapreview.com/oauth2/v1/authorize?prompt=consent
The preceding example shows the common use case of adding a custom parameter on top of the standard parameters.
Alternatively, if your requirements are more advanced, than you can take full control in building the Authorization Request URI by simply overriding the OAuth2AuthorizationRequest.authorizationRequestUri
property.
The following example shows a variation of the customAuthorizationRequest()
method from the preceding example, and instead overrides the OAuth2AuthorizationRequest.authorizationRequestUri
property.
private OAuth2AuthorizationRequest customAuthorizationRequest( OAuth2AuthorizationRequest authorizationRequest) { String customAuthorizationRequestUri = UriComponentsBuilder .fromUriString(authorizationRequest.getAuthorizationRequestUri()) .queryParam("prompt", "consent") .build(true) .toUriString(); return OAuth2AuthorizationRequest.from(authorizationRequest) .authorizationRequestUri(customAuthorizationRequestUri) .build(); }
The AuthorizationRequestRepository
is responsible for the persistence of the OAuth2AuthorizationRequest
from the time the Authorization Request is initiated to the time the Authorization Response is received (the callback).
Tip | |
---|---|
The |
The default implementation of AuthorizationRequestRepository
is HttpSessionOAuth2AuthorizationRequestRepository
, which stores the OAuth2AuthorizationRequest
in the HttpSession
.
If you have a custom implementation of AuthorizationRequestRepository
, you may configure it as shown in the following example:
@EnableWebSecurity public class OAuth2ClientSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Client(oauth2Client -> oauth2Client .authorizationCodeGrant(authorizationCodeGrant -> authorizationCodeGrant .authorizationRequestRepository(this.authorizationRequestRepository()) ... ) ); } }
Note | |
---|---|
Please refer to the Access Token Request/Response protocol flow for the Authorization Code grant. |
The default implementation of OAuth2AccessTokenResponseClient
for the Authorization Code grant is DefaultAuthorizationCodeTokenResponseClient
, which uses a RestOperations
for exchanging an authorization code for an access token at the Authorization Server’s Token Endpoint.
The DefaultAuthorizationCodeTokenResponseClient
is quite flexible as it allows you to customize the pre-processing of the Token Request and/or post-handling of the Token Response.
If you need to customize the pre-processing of the Token Request, you can provide DefaultAuthorizationCodeTokenResponseClient.setRequestEntityConverter()
with a custom Converter<OAuth2AuthorizationCodeGrantRequest, RequestEntity<?>>
.
The default implementation OAuth2AuthorizationCodeGrantRequestEntityConverter
builds a RequestEntity
representation of a standard OAuth 2.0 Access Token Request.
However, providing a custom Converter
, would allow you to extend the standard Token Request and add custom parameter(s).
Important | |
---|---|
The custom |
On the other end, if you need to customize the post-handling of the Token Response, you will need to provide DefaultAuthorizationCodeTokenResponseClient.setRestOperations()
with a custom configured RestOperations
.
The default RestOperations
is configured as follows:
RestTemplate restTemplate = new RestTemplate(Arrays.asList( new FormHttpMessageConverter(), new OAuth2AccessTokenResponseHttpMessageConverter())); restTemplate.setErrorHandler(new OAuth2ErrorResponseErrorHandler());
Tip | |
---|---|
Spring MVC |
OAuth2AccessTokenResponseHttpMessageConverter
is a HttpMessageConverter
for an OAuth 2.0 Access Token Response.
You can provide OAuth2AccessTokenResponseHttpMessageConverter.setTokenResponseConverter()
with a custom Converter<Map<String, String>, OAuth2AccessTokenResponse>
that is used for converting the OAuth 2.0 Access Token Response parameters to an OAuth2AccessTokenResponse
.
OAuth2ErrorResponseErrorHandler
is a ResponseErrorHandler
that can handle an OAuth 2.0 Error, eg. 400 Bad Request.
It uses an OAuth2ErrorHttpMessageConverter
for converting the OAuth 2.0 Error parameters to an OAuth2Error
.
Whether you customize DefaultAuthorizationCodeTokenResponseClient
or provide your own implementation of OAuth2AccessTokenResponseClient
, you’ll need to configure it as shown in the following example:
@EnableWebSecurity public class OAuth2ClientSecurityConfig extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .oauth2Client(oauth2Client -> oauth2Client .authorizationCodeGrant(authorizationCodeGrant -> authorizationCodeGrant .accessTokenResponseClient(this.accessTokenResponseClient()) ... ) ); } }
Note | |
---|---|
Please refer to the OAuth 2.0 Authorization Framework for further details on the Refresh Token. |
Note | |
---|---|
Please refer to the Access Token Request/Response protocol flow for the Refresh Token grant. |
The default implementation of OAuth2AccessTokenResponseClient
for the Refresh Token grant is DefaultRefreshTokenTokenResponseClient
, which uses a RestOperations
when refreshing an access token at the Authorization Server’s Token Endpoint.
The DefaultRefreshTokenTokenResponseClient
is quite flexible as it allows you to customize the pre-processing of the Token Request and/or post-handling of the Token Response.
If you need to customize the pre-processing of the Token Request, you can provide DefaultRefreshTokenTokenResponseClient.setRequestEntityConverter()
with a custom Converter<OAuth2RefreshTokenGrantRequest, RequestEntity<?>>
.
The default implementation OAuth2RefreshTokenGrantRequestEntityConverter
builds a RequestEntity
representation of a standard OAuth 2.0 Access Token Request.
However, providing a custom Converter
, would allow you to extend the standard Token Request and add custom parameter(s).
Important | |
---|---|
The custom |
On the other end, if you need to customize the post-handling of the Token Response, you will need to provide DefaultRefreshTokenTokenResponseClient.setRestOperations()
with a custom configured RestOperations
.
The default RestOperations
is configured as follows:
RestTemplate restTemplate = new RestTemplate(Arrays.asList( new FormHttpMessageConverter(), new OAuth2AccessTokenResponseHttpMessageConverter())); restTemplate.setErrorHandler(new OAuth2ErrorResponseErrorHandler());
Tip | |
---|---|
Spring MVC |
OAuth2AccessTokenResponseHttpMessageConverter
is a HttpMessageConverter
for an OAuth 2.0 Access Token Response.
You can provide OAuth2AccessTokenResponseHttpMessageConverter.setTokenResponseConverter()
with a custom Converter<Map<String, String>, OAuth2AccessTokenResponse>
that is used for converting the OAuth 2.0 Access Token Response parameters to an OAuth2AccessTokenResponse
.
OAuth2ErrorResponseErrorHandler
is a ResponseErrorHandler
that can handle an OAuth 2.0 Error, eg. 400 Bad Request.
It uses an OAuth2ErrorHttpMessageConverter
for converting the OAuth 2.0 Error parameters to an OAuth2Error
.
Whether you customize DefaultRefreshTokenTokenResponseClient
or provide your own implementation of OAuth2AccessTokenResponseClient
, you’ll need to configure it as shown in the following example:
// Customize
OAuth2AccessTokenResponseClient<OAuth2RefreshTokenGrantRequest> refreshTokenTokenResponseClient = ...
OAuth2AuthorizedClientProvider authorizedClientProvider =
OAuth2AuthorizedClientProviderBuilder.builder()
.authorizationCode()
.refreshToken(configurer -> configurer.accessTokenResponseClient(refreshTokenTokenResponseClient))
.build();
...
authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider);
Note | |
---|---|
|
The OAuth2RefreshToken
may optionally be returned in the Access Token Response for the authorization_code
and password
grant types.
If the OAuth2AuthorizedClient.getRefreshToken()
is available and the OAuth2AuthorizedClient.getAccessToken()
is expired, it will automatically be refreshed by the RefreshTokenOAuth2AuthorizedClientProvider
.
Note | |
---|---|
Please refer to the OAuth 2.0 Authorization Framework for further details on the Client Credentials grant. |
Note | |
---|---|
Please refer to the Access Token Request/Response protocol flow for the Client Credentials grant. |
The default implementation of OAuth2AccessTokenResponseClient
for the Client Credentials grant is DefaultClientCredentialsTokenResponseClient
, which uses a RestOperations
when requesting an access token at the Authorization Server’s Token Endpoint.
The DefaultClientCredentialsTokenResponseClient
is quite flexible as it allows you to customize the pre-processing of the Token Request and/or post-handling of the Token Response.
If you need to customize the pre-processing of the Token Request, you can provide DefaultClientCredentialsTokenResponseClient.setRequestEntityConverter()
with a custom Converter<OAuth2ClientCredentialsGrantRequest, RequestEntity<?>>
.
The default implementation OAuth2ClientCredentialsGrantRequestEntityConverter
builds a RequestEntity
representation of a standard OAuth 2.0 Access Token Request.
However, providing a custom Converter
, would allow you to extend the standard Token Request and add custom parameter(s).
Important | |
---|---|
The custom |
On the other end, if you need to customize the post-handling of the Token Response, you will need to provide DefaultClientCredentialsTokenResponseClient.setRestOperations()
with a custom configured RestOperations
.
The default RestOperations
is configured as follows:
RestTemplate restTemplate = new RestTemplate(Arrays.asList( new FormHttpMessageConverter(), new OAuth2AccessTokenResponseHttpMessageConverter())); restTemplate.setErrorHandler(new OAuth2ErrorResponseErrorHandler());
Tip | |
---|---|
Spring MVC |
OAuth2AccessTokenResponseHttpMessageConverter
is a HttpMessageConverter
for an OAuth 2.0 Access Token Response.
You can provide OAuth2AccessTokenResponseHttpMessageConverter.setTokenResponseConverter()
with a custom Converter<Map<String, String>, OAuth2AccessTokenResponse>
that is used for converting the OAuth 2.0 Access Token Response parameters to an OAuth2AccessTokenResponse
.
OAuth2ErrorResponseErrorHandler
is a ResponseErrorHandler
that can handle an OAuth 2.0 Error, eg. 400 Bad Request.
It uses an OAuth2ErrorHttpMessageConverter
for converting the OAuth 2.0 Error parameters to an OAuth2Error
.
Whether you customize DefaultClientCredentialsTokenResponseClient
or provide your own implementation of OAuth2AccessTokenResponseClient
, you’ll need to configure it as shown in the following example:
// Customize
OAuth2AccessTokenResponseClient<OAuth2ClientCredentialsGrantRequest> clientCredentialsTokenResponseClient = ...
OAuth2AuthorizedClientProvider authorizedClientProvider =
OAuth2AuthorizedClientProviderBuilder.builder()
.clientCredentials(configurer -> configurer.accessTokenResponseClient(clientCredentialsTokenResponseClient))
.build();
...
authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider);
Note | |
---|---|
|
Given the following Spring Boot 2.x properties for an OAuth 2.0 Client registration:
spring: security: oauth2: client: registration: okta: client-id: okta-client-id client-secret: okta-client-secret authorization-grant-type: client_credentials scope: read, write provider: okta: token-uri: https://dev-1234.oktapreview.com/oauth2/v1/token
…and the OAuth2AuthorizedClientManager
@Bean
:
@Bean public OAuth2AuthorizedClientManager authorizedClientManager( ClientRegistrationRepository clientRegistrationRepository, OAuth2AuthorizedClientRepository authorizedClientRepository) { OAuth2AuthorizedClientProvider authorizedClientProvider = OAuth2AuthorizedClientProviderBuilder.builder() .clientCredentials() .build(); DefaultOAuth2AuthorizedClientManager authorizedClientManager = new DefaultOAuth2AuthorizedClientManager( clientRegistrationRepository, authorizedClientRepository); authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider); return authorizedClientManager; }
You may obtain the OAuth2AccessToken
as follows:
@Controller public class OAuth2ClientController { @Autowired private OAuth2AuthorizedClientManager authorizedClientManager; @GetMapping("/") public String index(Authentication authentication, HttpServletRequest servletRequest, HttpServletResponse servletResponse) { OAuth2AuthorizeRequest authorizeRequest = OAuth2AuthorizeRequest.withClientRegistrationId("okta") .principal(authentication) .attributes(attrs -> { attrs.put(HttpServletRequest.class.getName(), servletRequest); attrs.put(HttpServletResponse.class.getName(), servletResponse); }) .build(); OAuth2AuthorizedClient authorizedClient = this.authorizedClientManager.authorize(authorizeRequest); OAuth2AccessToken accessToken = authorizedClient.getAccessToken(); ... return "index"; } }
Note | |
---|---|
|
Note | |
---|---|
Please refer to the OAuth 2.0 Authorization Framework for further details on the Resource Owner Password Credentials grant. |
Note | |
---|---|
Please refer to the Access Token Request/Response protocol flow for the Resource Owner Password Credentials grant. |
The default implementation of OAuth2AccessTokenResponseClient
for the Resource Owner Password Credentials grant is DefaultPasswordTokenResponseClient
, which uses a RestOperations
when requesting an access token at the Authorization Server’s Token Endpoint.
The DefaultPasswordTokenResponseClient
is quite flexible as it allows you to customize the pre-processing of the Token Request and/or post-handling of the Token Response.
If you need to customize the pre-processing of the Token Request, you can provide DefaultPasswordTokenResponseClient.setRequestEntityConverter()
with a custom Converter<OAuth2PasswordGrantRequest, RequestEntity<?>>
.
The default implementation OAuth2PasswordGrantRequestEntityConverter
builds a RequestEntity
representation of a standard OAuth 2.0 Access Token Request.
However, providing a custom Converter
, would allow you to extend the standard Token Request and add custom parameter(s).
Important | |
---|---|
The custom |
On the other end, if you need to customize the post-handling of the Token Response, you will need to provide DefaultPasswordTokenResponseClient.setRestOperations()
with a custom configured RestOperations
.
The default RestOperations
is configured as follows:
RestTemplate restTemplate = new RestTemplate(Arrays.asList( new FormHttpMessageConverter(), new OAuth2AccessTokenResponseHttpMessageConverter())); restTemplate.setErrorHandler(new OAuth2ErrorResponseErrorHandler());
Tip | |
---|---|
Spring MVC |
OAuth2AccessTokenResponseHttpMessageConverter
is a HttpMessageConverter
for an OAuth 2.0 Access Token Response.
You can provide OAuth2AccessTokenResponseHttpMessageConverter.setTokenResponseConverter()
with a custom Converter<Map<String, String>, OAuth2AccessTokenResponse>
that is used for converting the OAuth 2.0 Access Token Response parameters to an OAuth2AccessTokenResponse
.
OAuth2ErrorResponseErrorHandler
is a ResponseErrorHandler
that can handle an OAuth 2.0 Error, eg. 400 Bad Request.
It uses an OAuth2ErrorHttpMessageConverter
for converting the OAuth 2.0 Error parameters to an OAuth2Error
.
Whether you customize DefaultPasswordTokenResponseClient
or provide your own implementation of OAuth2AccessTokenResponseClient
, you’ll need to configure it as shown in the following example:
// Customize
OAuth2AccessTokenResponseClient<OAuth2PasswordGrantRequest> passwordTokenResponseClient = ...
OAuth2AuthorizedClientProvider authorizedClientProvider =
OAuth2AuthorizedClientProviderBuilder.builder()
.password(configurer -> configurer.accessTokenResponseClient(passwordTokenResponseClient))
.refreshToken()
.build();
...
authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider);
Note | |
---|---|
|
Given the following Spring Boot 2.x properties for an OAuth 2.0 Client registration:
spring: security: oauth2: client: registration: okta: client-id: okta-client-id client-secret: okta-client-secret authorization-grant-type: password scope: read, write provider: okta: token-uri: https://dev-1234.oktapreview.com/oauth2/v1/token
…and the OAuth2AuthorizedClientManager
@Bean
:
@Bean public OAuth2AuthorizedClientManager authorizedClientManager( ClientRegistrationRepository clientRegistrationRepository, OAuth2AuthorizedClientRepository authorizedClientRepository) { OAuth2AuthorizedClientProvider authorizedClientProvider = OAuth2AuthorizedClientProviderBuilder.builder() .password() .refreshToken() .build(); DefaultOAuth2AuthorizedClientManager authorizedClientManager = new DefaultOAuth2AuthorizedClientManager( clientRegistrationRepository, authorizedClientRepository); authorizedClientManager.setAuthorizedClientProvider(authorizedClientProvider); // Assuming the `username` and `password` are supplied as `HttpServletRequest` parameters, // map the `HttpServletRequest` parameters to `OAuth2AuthorizationContext.getAttributes()` authorizedClientManager.setContextAttributesMapper(contextAttributesMapper()); return authorizedClientManager; } private Function<OAuth2AuthorizeRequest, Map<String, Object>> contextAttributesMapper() { return authorizeRequest -> { Map<String, Object> contextAttributes = Collections.emptyMap(); HttpServletRequest servletRequest = authorizeRequest.getAttribute(HttpServletRequest.class.getName()); String username = servletRequest.getParameter(OAuth2ParameterNames.USERNAME); String password = servletRequest.getParameter(OAuth2ParameterNames.PASSWORD); if (StringUtils.hasText(username) && StringUtils.hasText(password)) { contextAttributes = new HashMap<>(); // `PasswordOAuth2AuthorizedClientProvider` requires both attributes contextAttributes.put(OAuth2AuthorizationContext.USERNAME_ATTRIBUTE_NAME, username); contextAttributes.put(OAuth2AuthorizationContext.PASSWORD_ATTRIBUTE_NAME, password); } return contextAttributes; }; }
You may obtain the OAuth2AccessToken
as follows:
@Controller public class OAuth2ClientController { @Autowired private OAuth2AuthorizedClientManager authorizedClientManager; @GetMapping("/") public String index(Authentication authentication, HttpServletRequest servletRequest, HttpServletResponse servletResponse) { OAuth2AuthorizeRequest authorizeRequest = OAuth2AuthorizeRequest.withClientRegistrationId("okta") .principal(authentication) .attributes(attrs -> { attrs.put(HttpServletRequest.class.getName(), servletRequest); attrs.put(HttpServletResponse.class.getName(), servletResponse); }) .build(); OAuth2AuthorizedClient authorizedClient = this.authorizedClientManager.authorize(authorizeRequest); OAuth2AccessToken accessToken = authorizedClient.getAccessToken(); ... return "index"; } }
Note | |
---|---|
|
The @RegisteredOAuth2AuthorizedClient
annotation provides the capability of resolving a method parameter to an argument value of type OAuth2AuthorizedClient
.
This is a convenient alternative compared to accessing the OAuth2AuthorizedClient
using the OAuth2AuthorizedClientManager
or OAuth2AuthorizedClientService
.
@Controller public class OAuth2ClientController { @GetMapping("/") public String index(@RegisteredOAuth2AuthorizedClient("okta") OAuth2AuthorizedClient authorizedClient) { OAuth2AccessToken accessToken = authorizedClient.getAccessToken(); ... return "index"; } }
The @RegisteredOAuth2AuthorizedClient
annotation is handled by OAuth2AuthorizedClientArgumentResolver
, which directly uses an OAuth2AuthorizedClientManager and therefore inherits it’s capabilities.
The OAuth 2.0 Client support integrates with WebClient
using an ExchangeFilterFunction
.
The ServletOAuth2AuthorizedClientExchangeFilterFunction
provides a simple mechanism for requesting protected resources by using an OAuth2AuthorizedClient
and including the associated OAuth2AccessToken
as a Bearer Token.
It directly uses an OAuth2AuthorizedClientManager and therefore inherits the following capabilities:
An OAuth2AccessToken
will be requested if the client has not yet been authorized.
authorization_code
- triggers the Authorization Request redirect to initiate the flow
client_credentials
- the access token is obtained directly from the Token Endpoint
password
- the access token is obtained directly from the Token Endpoint
OAuth2AccessToken
is expired, it will be refreshed (or renewed) if an OAuth2AuthorizedClientProvider
is available to perform the authorization
The following code shows an example of how to configure WebClient
with OAuth 2.0 Client support:
@Bean WebClient webClient(OAuth2AuthorizedClientManager authorizedClientManager) { ServletOAuth2AuthorizedClientExchangeFilterFunction oauth2Client = new ServletOAuth2AuthorizedClientExchangeFilterFunction(authorizedClientManager); return WebClient.builder() .apply(oauth2Client.oauth2Configuration()) .build(); }
The ServletOAuth2AuthorizedClientExchangeFilterFunction
determines the client to use (for a request) by resolving the OAuth2AuthorizedClient
from the ClientRequest.attributes()
(request attributes).
The following code shows how to set an OAuth2AuthorizedClient
as a request attribute:
@GetMapping("/") public String index(@RegisteredOAuth2AuthorizedClient("okta") OAuth2AuthorizedClient authorizedClient) { String resourceUri = ... String body = webClient .get() .uri(resourceUri) .attributes(oauth2AuthorizedClient(authorizedClient)) .retrieve() .bodyToMono(String.class) .block(); ... return "index"; }
The following code shows how to set the ClientRegistration.getRegistrationId()
as a request attribute:
@GetMapping("/") public String index() { String resourceUri = ... String body = webClient .get() .uri(resourceUri) .attributes(clientRegistrationId("okta")) .retrieve() .bodyToMono(String.class) .block(); ... return "index"; }
If neither OAuth2AuthorizedClient
or ClientRegistration.getRegistrationId()
is provided as a request attribute, the ServletOAuth2AuthorizedClientExchangeFilterFunction
can determine the default client to use depending on it’s configuration.
If setDefaultOAuth2AuthorizedClient(true)
is configured and the user has authenticated using HttpSecurity.oauth2Login()
, the OAuth2AccessToken
associated with the current OAuth2AuthenticationToken
is used.
The following code shows the specific configuration:
@Bean WebClient webClient(OAuth2AuthorizedClientManager authorizedClientManager) { ServletOAuth2AuthorizedClientExchangeFilterFunction oauth2Client = new ServletOAuth2AuthorizedClientExchangeFilterFunction(authorizedClientManager); oauth2Client.setDefaultOAuth2AuthorizedClient(true); return WebClient.builder() .apply(oauth2Client.oauth2Configuration()) .build(); }
Warning | |
---|---|
It is recommended to be cautious with this feature since all HTTP requests will receive the access token. |
Alternatively, if setDefaultClientRegistrationId("okta")
is configured with a valid ClientRegistration
, the OAuth2AccessToken
associated with the OAuth2AuthorizedClient
is used.
The following code shows the specific configuration:
@Bean WebClient webClient(OAuth2AuthorizedClientManager authorizedClientManager) { ServletOAuth2AuthorizedClientExchangeFilterFunction oauth2Client = new ServletOAuth2AuthorizedClientExchangeFilterFunction(authorizedClientManager); oauth2Client.setDefaultClientRegistrationId("okta"); return WebClient.builder() .apply(oauth2Client.oauth2Configuration()) .build(); }
Warning | |
---|---|
It is recommended to be cautious with this feature since all HTTP requests will receive the access token. |
Spring Security supports protecting endpoints using two forms of OAuth 2.0 Bearer Tokens:
This is handy in circumstances where an application has delegated its authority management to an authorization server (for example, Okta or Ping Identity). This authorization server can be consulted by resource servers to authorize requests.
Note | |
---|---|
Working samples for both JWTs and Opaque Tokens are available in the Spring Security repository. |
Most Resource Server support is collected into spring-security-oauth2-resource-server
.
However, the support for decoding and verifying JWTs is in spring-security-oauth2-jose
, meaning that both are necessary in order to have a working resource server that supports JWT-encoded Bearer Tokens.
When using Spring Boot, configuring an application as a resource server consists of two basic steps. First, include the needed dependencies and second, indicate the location of the authorization server.
In a Spring Boot application, to specify which authorization server to use, simply do:
spring: security: oauth2: resourceserver: jwt: issuer-uri: https://idp.example.com/issuer
Where https://idp.example.com/issuer
is the value contained in the iss
claim for JWT tokens that the authorization server will issue.
Resource Server will use this property to further self-configure, discover the authorization server’s public keys, and subsequently validate incoming JWTs.
Note | |
---|---|
To use the |
And that’s it!
When this property and these dependencies are used, Resource Server will automatically configure itself to validate JWT-encoded Bearer Tokens.
It achieves this through a deterministic startup process:
jwks_url
property
jwks_url
for valid public keys
iss
claim against https://idp.example.com
.
A consequence of this process is that the authorization server must be up and receiving requests in order for Resource Server to successfully start up.
Note | |
---|---|
If the authorization server is down when Resource Server queries it (given appropriate timeouts), then startup will fail. |
Once the application is started up, Resource Server will attempt to process any request containing an Authorization: Bearer
header:
GET / HTTP/1.1 Authorization: Bearer some-token-value # Resource Server will process this
So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification.
Given a well-formed JWT, Resource Server will:
jwks_url
endpoint during startup and matched against the JWT
exp
and nbf
timestamps and the JWT’s iss
claim, and
SCOPE_
.
Note | |
---|---|
As the authorization server makes available new keys, Spring Security will automatically rotate the keys used to validate JWTs. |
The resulting Authentication#getPrincipal
, by default, is a Spring Security Jwt
object, and Authentication#getName
maps to the JWT’s sub
property, if one is present.
From here, consider jumping to:
How to Configure without Tying Resource Server startup to an authorization server’s availability
If the authorization server doesn’t support any configuration endpoints, or if Resource Server must be able to start up independently from the authorization server, then the jwk-set-uri
can be supplied as well:
spring: security: oauth2: resourceserver: jwt: issuer-uri: https://idp.example.com jwk-set-uri: https://idp.example.com/.well-known/jwks.json
Note | |
---|---|
The JWK Set uri is not standardized, but can typically be found in the authorization server’s documentation |
Consequently, Resource Server will not ping the authorization server at startup.
We still specify the issuer-uri
so that Resource Server still validates the iss
claim on incoming JWTs.
Note | |
---|---|
This property can also be supplied directly on the DSL. |
There are two @Bean
s that Spring Boot generates on Resource Server’s behalf.
The first is a WebSecurityConfigurerAdapter
that configures the app as a resource server. When including spring-security-oauth2-jose
, this WebSecurityConfigurerAdapter
looks like:
protected void configure(HttpSecurity http) { http .authorizeRequests() .anyRequest().authenticated() .and() .oauth2ResourceServer(OAuth2ResourceServerConfigurer::jwt) }
If the application doesn’t expose a WebSecurityConfigurerAdapter
bean, then Spring Boot will expose the above default one.
Replacing this is as simple as exposing the bean within the application:
@EnableWebSecurity public class MyCustomSecurityConfiguration extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests() .mvcMatchers("/messages/**").hasAuthority("SCOPE_message:read") .anyRequest().authenticated() .and() .oauth2ResourceServer() .jwt() .jwtAuthenticationConverter(myConverter()); } }
The above requires the scope of message:read
for any URL that starts with /messages/
.
Methods on the oauth2ResourceServer
DSL will also override or replace auto configuration.
For example, the second @Bean
Spring Boot creates is a JwtDecoder
, which decodes String
tokens into validated instances of Jwt
:
@Bean public JwtDecoder jwtDecoder() { return JwtDecoders.fromIssuerLocation(issuerUri); }
Note | |
---|---|
Calling |
If the application doesn’t expose a JwtDecoder
bean, then Spring Boot will expose the above default one.
And its configuration can be overridden using jwkSetUri()
or replaced using decoder()
.
An authorization server’s JWK Set Uri can be configured as a configuration property or it can be supplied in the DSL:
@EnableWebSecurity public class DirectlyConfiguredJwkSetUri extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests() .anyRequest().authenticated() .and() .oauth2ResourceServer() .jwt() .jwkSetUri("https://idp.example.com/.well-known/jwks.json"); } }
Using jwkSetUri()
takes precedence over any configuration property.
More powerful than jwkSetUri()
is decoder()
, which will completely replace any Boot auto configuration of JwtDecoder
:
@EnableWebSecurity public class DirectlyConfiguredJwtDecoder extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests() .anyRequest().authenticated() .and() .oauth2ResourceServer() .jwt() .decoder(myCustomDecoder()); } }
This is handy when deeper configuration, like validation, mapping, or request timeouts, is necessary.
By default, NimbusJwtDecoder
, and hence Resource Server, will only trust and verify tokens using RS256
.
You can customize this via Spring Boot, the NimbusJwtDecoder builder, or from the JWK Set response.
The simplest way to set the algorithm is as a property:
spring: security: oauth2: resourceserver: jwt: jws-algorithm: RS512 jwk-set-uri: https://idp.example.org/.well-known/jwks.json
For greater power, though, we can use a builder that ships with NimbusJwtDecoder
:
@Bean JwtDecoder jwtDecoder() { return NimbusJwtDecoder.fromJwkSetUri(this.jwkSetUri) .jwsAlgorithm(RS512).build(); }
Calling jwsAlgorithm
more than once will configure NimbusJwtDecoder
to trust more than one algorithm, like so:
@Bean JwtDecoder jwtDecoder() { return NimbusJwtDecoder.fromJwkSetUri(this.jwkSetUri) .jwsAlgorithm(RS512).jwsAlgorithm(EC512).build(); }
Or, you can call jwsAlgorithms
:
@Bean JwtDecoder jwtDecoder() { return NimbusJwtDecoder.fromJwkSetUri(this.jwkSetUri) .jwsAlgorithms(algorithms -> { algorithms.add(RS512); algorithms.add(EC512); }).build(); }
Since Spring Security’s JWT support is based off of Nimbus, you can use all it’s great features as well.
For example, Nimbus has a JWSKeySelector
implementation that will select the set of algorithms based on the JWK Set URI response.
You can use it to generate a NimbusJwtDecoder
like so:
@Bean public JwtDecoder jwtDecoder() { // makes a request to the JWK Set endpoint JWSKeySelector<SecurityContext> jwsKeySelector = JWSAlgorithmFamilyJWSKeySelector.fromJWKSetURL(this.jwkSetUrl); DefaultJWTProcessor<SecurityContext> jwtProcessor = new DefaultJWTProcessor<>(); jwtProcessor.setJWSKeySelector(jwsKeySelector); return new NimbusJwtDecoder(jwtProcessor); }
Simpler than backing a Resource Server with a JWK Set endpoint is to hard-code an RSA public key. The public key can be provided via Spring Boot or by Using a Builder.
Specifying a key via Spring Boot is quite simple. The key’s location can be specified like so:
spring: security: oauth2: resourceserver: jwt: public-key-location: classpath:my-key.pub
Or, to allow for a more sophisticated lookup, you can post-process the RsaKeyConversionServicePostProcessor
:
@Bean BeanFactoryPostProcessor conversionServiceCustomizer() { return beanFactory -> beanFactory.getBean(RsaKeyConversionServicePostProcessor.class) .setResourceLoader(new CustomResourceLoader()); }
Specify your key’s location:
key.location: hfds://my-key.pub
And then autowire the value:
@Value("${key.location}")
RSAPublicKey key;
Using a single symmetric key is also simple.
You can simply load in your SecretKey
and use the appropriate NimbusJwtDecoder
builder, like so:
@Bean public JwtDecoder jwtDecoder() { return NimbusJwtDecoder.withSecretKey(this.key).build(); }
A JWT that is issued from an OAuth 2.0 Authorization Server will typically either have a scope
or scp
attribute, indicating the scopes (or authorities) it’s been granted, for example:
{ …, "scope" : "messages contacts"}
When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_".
This means that to protect an endpoint or method with a scope derived from a JWT, the corresponding expressions should include this prefix:
@EnableWebSecurity public class DirectlyConfiguredJwkSetUri extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests(authorizeRequests -> authorizeRequests .mvcMatchers("/contacts/**").hasAuthority("SCOPE_contacts") .mvcMatchers("/messages/**").hasAuthority("SCOPE_messages") .anyRequest().authenticated() ) .oauth2ResourceServer(OAuth2ResourceServerConfigurer::jwt); } }
Or similarly with method security:
@PreAuthorize("hasAuthority('SCOPE_messages')") public List<Message> getMessages(...) {}
However, there are a number of circumstances where this default is insufficient.
For example, some authorization servers don’t use the scope
attribute, but instead have their own custom attribute.
Or, at other times, the resource server may need to adapt the attribute or a composition of attributes into internalized authorities.
To this end, the DSL exposes jwtAuthenticationConverter()
:
@EnableWebSecurity public class DirectlyConfiguredJwkSetUri extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests() .anyRequest().authenticated() .and() .oauth2ResourceServer() .jwt() .jwtAuthenticationConverter(grantedAuthoritiesExtractor()); } } Converter<Jwt, AbstractAuthenticationToken> grantedAuthoritiesExtractor() { JwtAuthenticationConverter jwtAuthenticationConverter = new JwtAuthenticationConverter(); jwtAuthenticationConverter.setJwtGrantedAuthoritiesConverter (new GrantedAuthoritiesExtractor()); return jwtAuthenticationConverter; }
which is responsible for converting a Jwt
into an Authentication
.
As part of its configuration, we can supply a subsidiary converter to go from Jwt
to a Collection
of granted authorities.
That final converter might be something like GrantedAuthoritiesExtractor
below:
static class GrantedAuthoritiesExtractor implements Converter<Jwt, Collection<GrantedAuthority>> { public Collection<GrantedAuthority> convert(Jwt jwt) { Collection<String> authorities = (Collection<String>) jwt.getClaims().get("mycustomclaim"); return authorities.stream() .map(SimpleGrantedAuthority::new) .collect(Collectors.toList()); } }
For more flexibility, the DSL supports entirely replacing the converter with any class that implements Converter<Jwt, AbstractAuthenticationToken>
:
static class CustomAuthenticationConverter implements Converter<Jwt, AbstractAuthenticationToken> { public AbstractAuthenticationToken convert(Jwt jwt) { return new CustomAuthenticationToken(jwt); } }
Using minimal Spring Boot configuration, indicating the authorization server’s issuer uri, Resource Server will default to verifying the iss
claim as well as the exp
and nbf
timestamp claims.
In circumstances where validation needs to be customized, Resource Server ships with two standard validators and also accepts custom OAuth2TokenValidator
instances.
JWT’s typically have a window of validity, with the start of the window indicated in the nbf
claim and the end indicated in the exp
claim.
However, every server can experience clock drift, which can cause tokens to appear expired to one server, but not to another. This can cause some implementation heartburn as the number of collaborating servers increases in a distributed system.
Resource Server uses JwtTimestampValidator
to verify a token’s validity window, and it can be configured with a clockSkew
to alleviate the above problem:
@Bean JwtDecoder jwtDecoder() { NimbusJwtDecoder jwtDecoder = (NimbusJwtDecoder) JwtDecoders.fromIssuerLocation(issuerUri); OAuth2TokenValidator<Jwt> withClockSkew = new DelegatingOAuth2TokenValidator<>( new JwtTimestampValidator(Duration.ofSeconds(60)), new IssuerValidator(issuerUri)); jwtDecoder.setJwtValidator(withClockSkew); return jwtDecoder; }
Note | |
---|---|
By default, Resource Server configures a clock skew of 60 seconds. |
Adding a check for the aud
claim is simple with the OAuth2TokenValidator
API:
public class AudienceValidator implements OAuth2TokenValidator<Jwt> { OAuth2Error error = new OAuth2Error("invalid_token", "The required audience is missing", null); public OAuth2TokenValidatorResult validate(Jwt jwt) { if (jwt.getAudience().contains("messaging")) { return OAuth2TokenValidatorResult.success(); } else { return OAuth2TokenValidatorResult.failure(error); } } }
Then, to add into a resource server, it’s a matter of specifying the JwtDecoder
instance:
@Bean JwtDecoder jwtDecoder() { NimbusJwtDecoder jwtDecoder = (NimbusJwtDecoder) JwtDecoders.fromIssuerLocation(issuerUri); OAuth2TokenValidator<Jwt> audienceValidator = new AudienceValidator(); OAuth2TokenValidator<Jwt> withIssuer = JwtValidators.createDefaultWithIssuer(issuerUri); OAuth2TokenValidator<Jwt> withAudience = new DelegatingOAuth2TokenValidator<>(withIssuer, audienceValidator); jwtDecoder.setJwtValidator(withAudience); return jwtDecoder; }
Spring Security uses the Nimbus library for parsing JWTs and validating their signatures. Consequently, Spring Security is subject to Nimbus’s interpretation of each field value and how to coerce each into a Java type.
For example, because Nimbus remains Java 7 compatible, it doesn’t use Instant
to represent timestamp fields.
And it’s entirely possible to use a different library or for JWT processing, which may make its own coercion decisions that need adjustment.
Or, quite simply, a resource server may want to add or remove claims from a JWT for domain-specific reasons.
For these purposes, Resource Server supports mapping the JWT claim set with MappedJwtClaimSetConverter
.
By default, MappedJwtClaimSetConverter
will attempt to coerce claims into the following types:
Claim | Java Type |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
An individual claim’s conversion strategy can be configured using MappedJwtClaimSetConverter.withDefaults
:
@Bean JwtDecoder jwtDecoder() { NimbusJwtDecoder jwtDecoder = NimbusJwtDecoder.withJwkSetUri(jwkSetUri).build(); MappedJwtClaimSetConverter converter = MappedJwtClaimSetConverter .withDefaults(Collections.singletonMap("sub", this::lookupUserIdBySub)); jwtDecoder.setClaimSetConverter(converter); return jwtDecoder; }
This will keep all the defaults, except it will override the default claim converter for sub
.
MappedJwtClaimSetConverter
can also be used to add a custom claim, for example, to adapt to an existing system:
MappedJwtClaimSetConverter.withDefaults(Collections.singletonMap("custom", custom -> "value"));
And removing a claim is also simple, using the same API:
MappedJwtClaimSetConverter.withDefaults(Collections.singletonMap("legacyclaim", legacy -> null));
In more sophisticated scenarios, like consulting multiple claims at once or renaming a claim, Resource Server accepts any class that implements Converter<Map<String, Object>, Map<String,Object>>
:
public class UsernameSubClaimAdapter implements Converter<Map<String, Object>, Map<String, Object>> { private final MappedJwtClaimSetConverter delegate = MappedJwtClaimSetConverter.withDefaults(Collections.emptyMap()); public Map<String, Object> convert(Map<String, Object> claims) { Map<String, Object> convertedClaims = this.delegate.convert(claims); String username = (String) convertedClaims.get("user_name"); convertedClaims.put("sub", username); return convertedClaims; } }
And then, the instance can be supplied like normal:
@Bean JwtDecoder jwtDecoder() { NimbusJwtDecoder jwtDecoder = NimbusJwtDecoder.withJwkSetUri(jwkSetUri).build(); jwtDecoder.setClaimSetConverter(new UsernameSubClaimAdapter()); return jwtDecoder; }
By default, Resource Server uses connection and socket timeouts of 30 seconds each for coordinating with the authorization server.
This may be too short in some scenarios. Further, it doesn’t take into account more sophisticated patterns like back-off and discovery.
To adjust the way in which Resource Server connects to the authorization server, NimbusJwtDecoder
accepts an instance of RestOperations
:
@Bean public JwtDecoder jwtDecoder(RestTemplateBuilder builder) { RestOperations rest = builder .setConnectionTimeout(60000) .setReadTimeout(60000) .build(); NimbusJwtDecoder jwtDecoder = NimbusJwtDecoder.withJwkSetUri(jwkSetUri).restOperations(rest).build(); return jwtDecoder; }
Typically, an opaque token can be verified via an OAuth 2.0 Introspection Endpoint, hosted by the authorization server. This can be handy when revocation is a requirement.
When using Spring Boot, configuring an application as a resource server that uses introspection consists of two basic steps. First, include the needed dependencies and second, indicate the introspection endpoint details.
To specify where the introspection endpoint is, simply do:
security: oauth2: resourceserver: opaque-token: introspection-uri: https://idp.example.com/introspect client-id: client client-secret: secret
Where https://idp.example.com/introspect
is the introspection endpoint hosted by your authorization server and client-id
and client-secret
are the credentials needed to hit that endpoint.
Resource Server will use these properties to further self-configure and subsequently validate incoming JWTs.
Note | |
---|---|
When using introspection, the authorization server’s word is the law. If the authorization server responses that the token is valid, then it is. |
And that’s it!
When this property and these dependencies are used, Resource Server will automatically configure itself to validate Opaque Bearer Tokens.
This startup process is quite a bit simpler than for JWTs since no endpoints need to be discovered and no additional validation rules get added.
Once the application is started up, Resource Server will attempt to process any request containing an Authorization: Bearer
header:
GET / HTTP/1.1 Authorization: Bearer some-token-value # Resource Server will process this
So long as this scheme is indicated, Resource Server will attempt to process the request according to the Bearer Token specification.
Given an Opaque Token, Resource Server will
{ 'active' : true }
attribute
SCOPE_
The resulting Authentication#getPrincipal
, by default, is a Spring Security OAuth2AuthenticatedPrincipal
object, and Authentication#getName
maps to the token’s sub
property, if one is present.
From here, you may want to jump to:
Once a token is authenticated, an instance of BearerTokenAuthentication
is set in the SecurityContext
.
This means that it’s available in @Controller
methods when using @EnableWebMvc
in your configuration:
@GetMapping("/foo") public String foo(BearerTokenAuthentication authentication) { return authentication.getTokenAttributes().get("sub") + " is the subject"; }
Since BearerTokenAuthentication
holds an OAuth2AuthenticatedPrincipal
, that also means that it’s available to controller methods, too:
@GetMapping("/foo") public String foo(@AuthenticationPrincipal OAuth2AuthenticatedPrincipal principal) { return principal.getAttribute("sub") + " is the subject"; }
Of course, this also means that attributes can be accessed via SpEL.
For example, if using @EnableGlobalMethodSecurity
so that you can use @PreAuthorize
annotations, you can do:
@PreAuthorize("principal?.attributes['sub'] == 'foo'") public String forFoosEyesOnly() { return "foo"; }
There are two @Bean
s that Spring Boot generates on Resource Server’s behalf.
The first is a WebSecurityConfigurerAdapter
that configures the app as a resource server.
When use Opaque Token, this WebSecurityConfigurerAdapter
looks like:
protected void configure(HttpSecurity http) { http .authorizeRequests() .anyRequest().authenticated() .and() .oauth2ResourceServer(OAuth2ResourceServerConfigurer::opaqueToken) }
If the application doesn’t expose a WebSecurityConfigurerAdapter
bean, then Spring Boot will expose the above default one.
Replacing this is as simple as exposing the bean within the application:
@EnableWebSecurity public class MyCustomSecurityConfiguration extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests() .mvcMatchers("/messages/**").hasAuthority("SCOPE_message:read") .anyRequest().authenticated() .and() .oauth2ResourceServer() .opaqueToken() .introspector(myIntrospector()); } }
The above requires the scope of message:read
for any URL that starts with /messages/
.
Methods on the oauth2ResourceServer
DSL will also override or replace auto configuration.
For example, the second @Bean
Spring Boot creates is an OpaqueTokenIntrospector
, which decodes String
tokens into validated instances of OAuth2AuthenticatedPrincipal
:
@Bean public OpaqueTokenIntrospector introspector() { return new NimbusOpaqueTokenIntrospector(introspectionUri, clientId, clientSecret); }
If the application doesn’t expose a OpaqueTokenIntrospector
bean, then Spring Boot will expose the above default one.
And its configuration can be overridden using introspectionUri()
and introspectionClientCredentials()
or replaced using introspector()
.
An authorization server’s Introspection Uri can be configured as a configuration property or it can be supplied in the DSL:
@EnableWebSecurity public class DirectlyConfiguredIntrospectionUri extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests() .anyRequest().authenticated() .and() .oauth2ResourceServer() .opaqueToken() .introspectionUri("https://idp.example.com/introspect") .introspectionClientCredentials("client", "secret"); } }
Using introspectionUri()
takes precedence over any configuration property.
More powerful than introspectionUri()
is introspector()
, which will completely replace any Boot auto configuration of OpaqueTokenIntrospector
:
@EnableWebSecurity public class DirectlyConfiguredIntrospector extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests() .anyRequest().authenticated() .and() .oauth2ResourceServer() .opaqueToken() .introspector(myCustomIntrospector()); } }
This is handy when deeper configuration, like authority mapping, JWT revocation, or request timeouts, is necessary.
An OAuth 2.0 Introspection endpoint will typically return a scope
attribute, indicating the scopes (or authorities) it’s been granted, for example:
{ …, "scope" : "messages contacts"}
When this is the case, Resource Server will attempt to coerce these scopes into a list of granted authorities, prefixing each scope with the string "SCOPE_".
This means that to protect an endpoint or method with a scope derived from an Opaque Token, the corresponding expressions should include this prefix:
@EnableWebSecurity public class MappedAuthorities extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) { http .authorizeRequests(authorizeRequests -> authorizeRequests .mvcMatchers("/contacts/**").hasAuthority("SCOPE_contacts") .mvcMatchers("/messages/**").hasAuthority("SCOPE_messages") .anyRequest().authenticated() ) .oauth2ResourceServer(OAuth2ResourceServerConfigurer::opaqueToken); } }
Or similarly with method security:
@PreAuthorize("hasAuthority('SCOPE_messages')") public List<Message> getMessages(...) {}
By default, Opaque Token support will extract the scope claim from an introspection response and parse it into individual GrantedAuthority
instances.
For example, if the introspection response were:
{ "active" : true, "scope" : "message:read message:write" }
Then Resource Server would generate an Authentication
with two authorities, one for message:read
and the other for message:write
.
This can, of course, be customized using a custom OpaqueTokenIntrospector
that takes a look at the attribute set and converts in its own way:
public class CustomAuthoritiesOpaqueTokenIntrospector implements OpaqueTokenIntrospector { private OpaqueTokenIntrospector delegate = new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); public OAuth2AuthenticatedPrincipal introspect(String token) { OAuth2AuthenticatedPrincipal principal = this.delegate.introspect(token); return new DefaultOAuth2AuthenticatedPrincipal( principal.getName(), principal.getAttributes(), extractAuthorities(principal)); } private Collection<GrantedAuthority> extractAuthorities(OAuth2AuthenticatedPrincipal principal) { List<String> scopes = principal.getAttribute(OAuth2IntrospectionClaimNames.SCOPE); return scopes.stream() .map(SimpleGrantedAuthority::new) .collect(Collectors.toList()); } }
Thereafter, this custom introspector can be configured simply by exposing it as a @Bean
:
@Bean public OpaqueTokenIntrospector introspector() { return new CustomAuthoritiesOpaqueTokenIntrospector(); }
By default, Resource Server uses connection and socket timeouts of 30 seconds each for coordinating with the authorization server.
This may be too short in some scenarios. Further, it doesn’t take into account more sophisticated patterns like back-off and discovery.
To adjust the way in which Resource Server connects to the authorization server, NimbusOpaqueTokenIntrospector
accepts an instance of RestOperations
:
@Bean public OpaqueTokenIntrospector introspector(RestTemplateBuilder builder) { RestOperations rest = builder .basicAuthentication(clientId, clientSecret) .setConnectionTimeout(60000) .setReadTimeout(60000) .build(); return new NimbusOpaqueTokenIntrospector(introspectionUri, rest); }
A common question is whether or not introspection is compatible with JWTs. Spring Security’s Opaque Token support has been designed to not care about the format of the token — it will gladly pass any token to the introspection endpoint provided.
So, let’s say that you’ve got a requirement that requires you to check with the authorization server on each request, in case the JWT has been revoked.
Even though you are using the JWT format for the token, your validation method is introspection, meaning you’d want to do:
spring: security: oauth2: resourceserver: opaque-token: introspection-uri: https://idp.example.org/introspection client-id: client client-secret: secret
In this case, the resulting Authentication
would be BearerTokenAuthentication
.
Any attributes in the corresponding OAuth2AuthenticatedPrincipal
would be whatever was returned by the introspection endpoint.
But, let’s say that, oddly enough, the introspection endpoint only returns whether or not the token is active. Now what?
In this case, you can create a custom OpaqueTokenIntrospector
that still hits the endpoint, but then updates the returned principal to have the JWTs claims as the attributes:
public class JwtOpaqueTokenIntrospector implements OpaqueTokenIntrospector { private OpaqueTokenIntrospector delegate = new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); private JwtDecoder jwtDecoder = new NimbusJwtDecoder(new ParseOnlyJWTProcessor()); public OAuth2AuthenticatedPrincipal introspect(String token) { OAuth2AuthenticatedPrincipal principal = this.delegate.introspect(token); try { Jwt jwt = this.jwtDecoder.decode(token); return new DefaultOAuth2AuthenticatedPrincipal(jwt.getClaims(), NO_AUTHORITIES); } catch (JwtException e) { throw new OAuth2IntrospectionException(e); } } private static class ParseOnlyJWTProcessor extends DefaultJWTProcessor<SecurityContext> { JWTClaimsSet process(SignedJWT jwt, SecurityContext context) throws JOSEException { return jwt.getJWTClaimSet(); } } }
Thereafter, this custom introspector can be configured simply by exposing it as a @Bean
:
@Bean public OpaqueTokenIntrospector introspector() { return new JwtOpaqueTokenIntropsector(); }
Generally speaking, a Resource Server doesn’t care about the underlying user, but instead about the authorities that have been granted.
That said, at times it can be valuable to tie the authorization statement back to a user.
If an application is also using spring-security-oauth2-client
, having set up the appropriate ClientRegistrationRepository
, then this is quite simple with a custom OpaqueTokenIntrospector
.
This implementation below does three things:
/userinfo
endpoint
/userinfo
endpoint
public class UserInfoOpaqueTokenIntrospector implements OpaqueTokenIntrospector { private final OpaqueTokenIntrospector delegate = new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); private final OAuth2UserService oauth2UserService = new DefaultOAuth2UserService(); private final ClientRegistrationRepository repository; // ... constructor @Override public OAuth2AuthenticatedPrincipal introspect(String token) { OAuth2AuthenticatedPrincipal authorized = this.delegate.introspect(token); Instant issuedAt = authorized.getAttribute(ISSUED_AT); Instant expiresAt = authorized.getAttribute(EXPIRES_AT); ClientRegistration clientRegistration = this.repository.findByRegistrationId("registration-id"); OAuth2AccessToken token = new OAuth2AccessToken(BEARER, token, issuedAt, expiresAt); OAuth2UserRequest oauth2UserRequest = new OAuth2UserRequest(clientRegistration, token); return this.oauth2UserService.loadUser(oauth2UserRequest); } }
If you aren’t using spring-security-oauth2-client
, it’s still quite simple.
You will simply need to invoke the /userinfo
with your own instance of WebClient
:
public class UserInfoOpaqueTokenIntrospector implements OpaqueTokenIntrospector { private final OpaqueTokenIntrospector delegate = new NimbusOpaqueTokenIntrospector("https://idp.example.org/introspect", "client", "secret"); private final WebClient rest = WebClient.create(); @Override public OAuth2AuthenticatedPrincipal introspect(String token) { OAuth2AuthenticatedPrincipal authorized = this.delegate.introspect(token); return makeUserInfoRequest(authorized); } }
Either way, having created your OpaqueTokenIntrospector
, you should publish it as a @Bean
to override the defaults:
@Bean OpaqueTokenIntrospector introspector() { return new UserInfoOpaqueTokenIntrospector(...); }
In some cases, you may have a need to access both kinds of tokens. For example, you may support more than one tenant where one tenant issues JWTs and the other issues opaque tokens.
If this decision must be made at request-time, then you can use an AuthenticationManagerResolver
to achieve it, like so:
@Bean AuthenticationManagerResolver<HttpServletRequest> tokenAuthenticationManagerResolver() { BearerTokenResolver bearerToken = new DefaultBearerTokenResolver(); JwtAuthenticationProvider jwt = jwt(); OpaqueTokenAuthenticationProvider opaqueToken = opaqueToken(); return request -> { String token = bearerToken.resolve(request); if (isAJwt(token)) { return jwt::authenticate; } else { return opaqueToken::authenticate; } } }
And then specify this AuthenticationManagerResolver
in the DSL:
http
.authorizeRequests()
.anyRequest().authenticated()
.and()
.oauth2ResourceServer()
.authenticationManagerResolver(this.tokenAuthenticationManagerResolver);
A resource server is considered multi-tenant when there are multiple strategies for verifying a bearer token, keyed by some tenant identifier.
For example, your resource server may accept bearer tokens from two different authorization servers. Or, your authorization server may represent a multiplicity of issuers.
In each case, there are two things that need to be done and trade-offs associated with how you choose to do them:
Resolving the tenant by request material can be done my implementing an AuthenticationManagerResolver
, which determines the AuthenticationManager
at runtime, like so:
@Component public class TenantAuthenticationManagerResolver implements AuthenticationManagerResolver<HttpServletRequest> { private final BearerTokenResolver resolver = new DefaultBearerTokenResolver(); private final TenantRepository tenants; private final Map<String, AuthenticationManager> authenticationManagers = new ConcurrentHashMap<>(); public TenantAuthenticationManagerResolver(TenantRepository tenants) { this.tenants = tenants; } @Override public AuthenticationManager resolve(HttpServletRequest request) { return this.authenticationManagers.computeIfAbsent(toTenant(request), this::fromTenant); } private String toTenant(HttpServletRequest request) { String[] pathParts = request.getRequestURI().split("/"); return pathParts.length > 0 ? pathParts[1] : null; } private AuthenticationManager fromTenant(String tenant) { return Optional.ofNullable(this.tenants.get(tenant)) .map(JwtDecoders::fromIssuerLocation) .map(JwtAuthenticationProvider::new) .orElseThrow(() -> new IllegalArgumentException("unknown tenant"))::authenticate; } }
A hypothetical source for tenant information | |
A cache for `AuthenticationManager`s, keyed by tenant identifier | |
Looking up the tenant is more secure than simply computing the issuer location on the fly - the lookup acts as a tenant whitelist | |
Create a |
And then specify this AuthenticationManagerResolver
in the DSL:
http
.authorizeRequests()
.anyRequest().authenticated()
.and()
.oauth2ResourceServer()
.authenticationManagerResolver(this.tenantAuthenticationManagerResolver);
Resolving the tenant by claim is similar to doing so by request material.
The only real difference is the toTenant
method implementation:
@Component public class TenantAuthenticationManagerResolver implements AuthenticationManagerResolver<HttpServletRequest> { private final BearerTokenResolver resolver = new DefaultBearerTokenResolver(); private final TenantRepository tenants; private final Map<String, AuthenticationManager> authenticationManagers = new ConcurrentHashMap<>(); public TenantAuthenticationManagerResolver(TenantRepository tenants) { this.tenants = tenants; } @Override public AuthenticationManager resolve(HttpServletRequest request) { return this.authenticationManagers.computeIfAbsent(toTenant(request), this::fromTenant); } private String toTenant(HttpServletRequest request) { try { String token = this.resolver.resolve(request); return (String) JWTParser.parse(token).getJWTClaimsSet().getIssuer(); } catch (Exception e) { throw new IllegalArgumentException(e); } } private AuthenticationManager fromTenant(String tenant) { return Optional.ofNullable(this.tenants.get(tenant)) .map(JwtDecoders::fromIssuerLocation) .map(JwtAuthenticationProvider::new) .orElseThrow(() -> new IllegalArgumentException("unknown tenant"))::authenticate; } }
A hypothetical source for tenant information | |
A cache for `AuthenticationManager`s, keyed by tenant identifier | |
Looking up the tenant is more secure than simply computing the issuer location on the fly - the lookup acts as a tenant whitelist | |
Create a |
http
.authorizeRequests()
.anyRequest().authenticated()
.and()
.oauth2ResourceServer()
.authenticationManagerResolver(this.tenantAuthenticationManagerResolver);
You may have observed that this strategy, while simple, comes with the trade-off that the JWT is parsed once by the AuthenticationManagerResolver
and then again by the JwtDecoder
.
This extra parsing can be alleviated by configuring the JwtDecoder
directly with a JWTClaimSetAwareJWSKeySelector
from Nimbus:
@Component public class TenantJWSKeySelector implements JWTClaimSetAwareJWSKeySelector<SecurityContext> { private final TenantRepository tenants; private final Map<String, JWSKeySelector<SecurityContext>> selectors = new ConcurrentHashMap<>(); public TenantJWSKeySelector(TenantRepository tenants) { this.tenants = tenants; } @Override public List<? extends Key> selectKeys(JWSHeader jwsHeader, JWTClaimsSet jwtClaimsSet, SecurityContext securityContext) throws KeySourceException { return this.selectors.computeIfAbsent(toTenant(jwtClaimsSet), this::fromTenant) .selectJWSKeys(jwsHeader, securityContext); } private String toTenant(JWTClaimsSet claimSet) { return (String) claimSet.getClaim("iss"); } private JWSKeySelector<SecurityContext> fromTenant(String tenant) { return Optional.ofNullable(this.tenantRepository.findById(tenant)) .map(t -> t.getAttrbute("jwks_uri")) .map(this::fromUri) .orElseThrow(() -> new IllegalArgumentException("unknown tenant")); } private JWSKeySelector<SecurityContext> fromUri(String uri) { try { return JWSAlgorithmFamilyJWSKeySelector.fromJWKSetURL(new URL(uri)); } catch (Exception e) { throw new IllegalArgumentException(e); } } }
A hypothetical source for tenant information | |
A cache for `JWKKeySelector`s, keyed by tenant identifier | |
Looking up the tenant is more secure than simply calculating the JWK Set endpoint on the fly - the lookup acts as a tenant whitelist | |
Create a |
The above key selector is a composition of many key selectors.
It chooses which key selector to use based on the iss
claim in the JWT.
Note | |
---|---|
To use this approach, make sure that the authorization server is configured to include the claim set as part of the token’s signature. Without this, you have no guarantee that the issuer hasn’t been altered by a bad actor. |
Next, we can construct a JWTProcessor
:
@Bean JWTProcessor jwtProcessor(JWTClaimSetJWSKeySelector keySelector) { ConfigurableJWTProcessor<SecurityContext> jwtProcessor = new DefaultJWTProcessor(); jwtProcessor.setJWTClaimSetJWSKeySelector(keySelector); return jwtProcessor; }
As you are already seeing, the trade-off for moving tenant-awareness down to this level is more configuration. We have just a bit more.
Next, we still want to make sure you are validating the issuer. But, since the issuer may be different per JWT, then you’ll need a tenant-aware validator, too:
@Component public class TenantJwtIssuerValidator implements OAuth2TokenValidator<Jwt> { private final TenantRepository tenants; private final Map<String, JwtIssuerValidator> validators = new ConcurrentHashMap<>(); public TenantJwtIssuerValidator(TenantRepository tenants) { this.tenants = tenants; } @Override public OAuth2TokenValidatorResult validate(Jwt token) { return this.validators.computeIfAbsent(toTenant(token), this::fromTenant) .validate(token); } private String toTenant(Jwt jwt) { return jwt.getIssuer(); } private JwtIssuerValidator fromTenant(String tenant) { return Optional.ofNullable(this.tenants.findById(tenant)) .map(t -> t.getAttribute("issuer")) .map(JwtIssuerValidator::new) .orElseThrow(() -> new IllegalArgumentException("unknown tenant")); } }
Now that we have a tenant-aware processor and a tenant-aware validator, we can proceed with creating our JwtDecoder
:
@Bean JwtDecoder jwtDecoder(JWTProcessor jwtProcessor, OAuth2TokenValidator<Jwt> jwtValidator) { NimbusJwtDecoder decoder = new NimbusJwtDecoder(processor); OAuth2TokenValidator<Jwt> validator = new DelegatingOAuth2TokenValidator<> (JwtValidators.createDefault(), this.jwtValidator); decoder.setJwtValidator(validator); return decoder; }
We’ve finished talking about resolving the tenant.
If you’ve chosen to resolve the tenant by request material, then you’ll need to make sure you address your downstream resource servers in the same way. For example, if you are resolving it by subdomain, you’ll need to address the downstream resource server using the same subdomain.
However, if you resolve it by a claim in the bearer token, read on to learn about Spring Security’s support for bearer token propagation.
By default, Resource Server looks for a bearer token in the Authorization
header.
This, however, can be customized in a couple of ways.
For example, you may have a need to read the bearer token from a custom header.
To achieve this, you can wire a HeaderBearerTokenResolver
instance into the DSL, as you can see in the following example:
http .oauth2ResourceServer() .bearerTokenResolver(new HeaderBearerTokenResolver("x-goog-iap-jwt-assertion"));
Or, you may wish to read the token from a form parameter, which you can do by configuring the DefaultBearerTokenResolver
, as you can see below:
DefaultBearerTokenResolver resolver = new DefaultBearerTokenResolver();
resolver.setAllowFormEncodedBodyParameter(true);
http
.oauth2ResourceServer()
.bearerTokenResolver(resolver);
Now that you’re in possession of a bearer token, it might be handy to pass that to downstream services.
This is quite simple with ServletBearerExchangeFilterFunction
, which you can see in the following example:
@Bean public WebClient rest() { return WebClient.builder() .filter(new ServletBearerExchangeFilterFunction()) .build(); }
When the above WebClient
is used to perform requests, Spring Security will look up the current Authentication
and extract any AbstractOAuth2Token
credential.
Then, it will propagate that token in the Authorization
header.
For example:
this.rest.get() .uri("https://other-service.example.com/endpoint") .retrieve() .bodyToMono(String.class) .block()
Will invoke the https://other-service.example.com/endpoint
, adding the bearer token Authorization
header for you.
In places where you need to override this behavior, it’s a simple matter of supplying the header yourself, like so:
this.rest.get() .uri("https://other-service.example.com/endpoint") .headers(headers -> headers.setBearerAuth(overridingToken)) .retrieve() .bodyToMono(String.class) .block()
In this case, the filter will fall back and simply forward the request onto the rest of the web filter chain.
Note | |
---|---|
Unlike the OAuth 2.0 Client filter function, this filter function makes no attempt to renew the token, should it be expired. To obtain this level of support, please use the OAuth 2.0 Client filter. |
There is no dedicated support for RestTemplate
at the moment, but you can achieve propagation quite simply with your own interceptor:
@Bean RestTemplate rest() { RestTemplate rest = new RestTemplate(); rest.getInterceptors().add((request, body, execution) -> { Authentication authentication = SecurityContextHolder.getContext().getAuthentication(); if (authentication == null) { return execution.execute(request, body); } if (!(authentication.getCredentials() instanceof AbstractOAuth2Token)) { return execution.execute(request, body); } AbstractOAuth2Token token = (AbstractOAuth2Token) authentication.getCredentials(); request.getHeaders().setBearerAuth(token.getTokenValue()); return execution.execute(request, body); }); return rest; }