General support for Java Configuration was added to Spring Framework in Spring 3.1. Since Spring Security 3.2 there has been Spring Security Java Configuration support which enables users to easily configure Spring Security without the use of any XML.
If you are familiar with the Chapter 17, Security Namespace Configuration then you should find quite a few similarities between it and the Security Java Configuration support.
Note | |
---|---|
Spring Security provides lots of sample applications which demonstrate the use of Spring Security Java Configuration. |
The first step is to create our Spring Security Java Configuration.
The configuration creates a Servlet Filter known as the springSecurityFilterChain
which is responsible for all the security (protecting the application URLs, validating submitted username and passwords, redirecting to the log in form, etc) within your application.
You can find the most basic example of a Spring Security Java Configuration below:
import org.springframework.beans.factory.annotation.Autowired; import org.springframework.context.annotation.*; import org.springframework.security.config.annotation.authentication.builders.*; import org.springframework.security.config.annotation.web.configuration.*; @EnableWebSecurity public class WebSecurityConfig { @Bean public UserDetailsService userDetailsService() { InMemoryUserDetailsManager manager = new InMemoryUserDetailsManager(); manager.createUser(User.withDefaultPasswordEncoder().username("user").password("password").roles("USER").build()); return manager; } }
There really isn’t much to this configuration, but it does a lot. You can find a summary of the features below:
Security Header integration
Integrate with the following Servlet API methods
The next step is to register the springSecurityFilterChain
with the war.
This can be done in Java Configuration with Spring’s WebApplicationInitializer support in a Servlet 3.0+ environment.
Not suprisingly, Spring Security provides a base class AbstractSecurityWebApplicationInitializer
that will ensure the springSecurityFilterChain
gets registered for you.
The way in which we use AbstractSecurityWebApplicationInitializer
differs depending on if we are already using Spring or if Spring Security is the only Spring component in our application.
If you are not using Spring or Spring MVC, you will need to pass in the WebSecurityConfig
into the superclass to ensure the configuration is picked up.
You can find an example below:
import org.springframework.security.web.context.*; public class SecurityWebApplicationInitializer extends AbstractSecurityWebApplicationInitializer { public SecurityWebApplicationInitializer() { super(WebSecurityConfig.class); } }
The SecurityWebApplicationInitializer
will do the following things:
If we were using Spring elsewhere in our application we probably already had a WebApplicationInitializer
that is loading our Spring Configuration.
If we use the previous configuration we would get an error.
Instead, we should register Spring Security with the existing ApplicationContext
.
For example, if we were using Spring MVC our SecurityWebApplicationInitializer
would look something like the following:
import org.springframework.security.web.context.*; public class SecurityWebApplicationInitializer extends AbstractSecurityWebApplicationInitializer { }
This would simply only register the springSecurityFilterChain Filter for every URL in your application.
After that we would ensure that WebSecurityConfig
was loaded in our existing ApplicationInitializer.
For example, if we were using Spring MVC it would be added in the getRootConfigClasses()
public class MvcWebApplicationInitializer extends AbstractAnnotationConfigDispatcherServletInitializer { @Override protected Class<?>[] getRootConfigClasses() { return new Class[] { WebSecurityConfig.class }; } // ... other overrides ... }
Thus far our WebSecurityConfig only contains information about how to authenticate our users.
How does Spring Security know that we want to require all users to be authenticated?
How does Spring Security know we want to support form based authentication?
Actually, there is an configuration class that is being invoked behind the scenes called WebSecurityConfigurerAdapter
.
It has a method called configure
with the following default implementation:
protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() ) .formLogin(withDefaults()) .httpBasic(withDefaults()); }
The default configuration above:
You will notice that this configuration is quite similar the XML Namespace configuration:
<http> <intercept-url pattern="/**" access="authenticated"/> <form-login /> <http-basic /> </http>
We can configure multiple HttpSecurity instances just as we can have multiple <http>
blocks.
The key is to extend the WebSecurityConfigurerAdapter
multiple times.
For example, the following is an example of having a different configuration for URL’s that start with /api/
.
@EnableWebSecurity public class MultiHttpSecurityConfig { @Bean public UserDetailsService userDetailsService() throws Exception { // ensure the passwords are encoded properly UserBuilder users = User.withDefaultPasswordEncoder(); InMemoryUserDetailsManager manager = new InMemoryUserDetailsManager(); manager.createUser(users.username("user").password("password").roles("USER").build()); manager.createUser(users.username("admin").password("password").roles("USER","ADMIN").build()); return manager; } @Configuration @Order(1) public static class ApiWebSecurityConfigurationAdapter extends WebSecurityConfigurerAdapter { protected void configure(HttpSecurity http) throws Exception { http .antMatcher("/api/**") .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().hasRole("ADMIN") ) .httpBasic(withDefaults()); } } @Configuration public static class FormLoginWebSecurityConfigurerAdapter extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() ) .formLogin(withDefaults()); } } }
Configure Authentication as normal | |
Create an instance of | |
The | |
Create another instance of |
You can provide your own custom DSLs in Spring Security. For example, you might have something that looks like this:
public class MyCustomDsl extends AbstractHttpConfigurer<MyCustomDsl, HttpSecurity> { private boolean flag; @Override public void init(H http) throws Exception { // any method that adds another configurer // must be done in the init method http.csrf().disable(); } @Override public void configure(H http) throws Exception { ApplicationContext context = http.getSharedObject(ApplicationContext.class); // here we lookup from the ApplicationContext. You can also just create a new instance. MyFilter myFilter = context.getBean(MyFilter.class); myFilter.setFlag(flag); http.addFilterBefore(myFilter, UsernamePasswordAuthenticationFilter.class); } public MyCustomDsl flag(boolean value) { this.flag = value; return this; } public static MyCustomDsl customDsl() { return new MyCustomDsl(); } }
Note | |
---|---|
This is actually how methods like |
The custom DSL can then be used like this:
@EnableWebSecurity public class Config extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .apply(customDsl()) .flag(true) .and() ...; } }
The code is invoked in the following order:
If you want, you can have WebSecurityConfiguerAdapter
add MyCustomDsl
by default by using SpringFactories
.
For example, you would create a resource on the classpath named META-INF/spring.factories
with the following contents:
META-INF/spring.factories.
org.springframework.security.config.annotation.web.configurers.AbstractHttpConfigurer = sample.MyCustomDsl
Users wishing to disable the default can do so explicitly.
@EnableWebSecurity public class Config extends WebSecurityConfigurerAdapter { @Override protected void configure(HttpSecurity http) throws Exception { http .apply(customDsl()).disable() ...; } }
Spring Security’s Java Configuration does not expose every property of every object that it configures. This simplifies the configuration for a majority of users. Afterall, if every property was exposed, users could use standard bean configuration.
While there are good reasons to not directly expose every property, users may still need more advanced configuration options.
To address this Spring Security introduces the concept of an ObjectPostProcessor
which can be used to modify or replace many of the Object instances created by the Java Configuration.
For example, if you wanted to configure the filterSecurityPublishAuthorizationSuccess
property on FilterSecurityInterceptor
you could use the following:
@Override protected void configure(HttpSecurity http) throws Exception { http .authorizeRequests(authorizeRequests -> authorizeRequests .anyRequest().authenticated() .withObjectPostProcessor(new ObjectPostProcessor<FilterSecurityInterceptor>() { public <O extends FilterSecurityInterceptor> O postProcess( O fsi) { fsi.setPublishAuthorizationSuccess(true); return fsi; } }) ); }