This version is still in development and is not considered stable yet. For the latest stable version, please use Spring Data MongoDB 4.3.5! |
Querying Documents
You can use the Query
and Criteria
classes to express your queries.
They have method names that mirror the native MongoDB operator names, such as lt
, lte
, is
, and others.
The Query
and Criteria
classes follow a fluent API style so that you can chain together multiple method criteria and queries while having easy-to-understand code.
To improve readability, static imports let you avoid using the 'new' keyword for creating Query
and Criteria
instances.
You can also use BasicQuery
to create Query
instances from plain JSON Strings, as shown in the following example:
BasicQuery query = new BasicQuery("{ age : { $lt : 50 }, accounts.balance : { $gt : 1000.00 }}");
List<Person> result = mongoTemplate.find(query, Person.class);
Querying Documents in a Collection
Earlier, we saw how to retrieve a single document by using the findOne
and findById
methods on MongoTemplate
.
These methods return a single domain object right way or using a reactive API a Mono
emitting a single element.
We can also query for a collection of documents to be returned as a list of domain objects.
Assuming that we have a number of Person
objects with name and age stored as documents in a collection and that each person has an embedded account document with a balance, we can now run a query using the following code:
-
Imperative
-
Reactive
import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query.query;
// ...
List<Person> result = template.query(Person.class)
.matching(query(where("age").lt(50).and("accounts.balance").gt(1000.00d)))
.all();
import static org.springframework.data.mongodb.core.query.Criteria.where;
import static org.springframework.data.mongodb.core.query.Query.query;
// ...
Flux<Person> result = template.query(Person.class)
.matching(query(where("age").lt(50).and("accounts.balance").gt(1000.00d)))
.all();
All find methods take a Query
object as a parameter.
This object defines the criteria and options used to perform the query.
The criteria are specified by using a Criteria
object that has a static factory method named where
to instantiate a new Criteria
object.
We recommend using static imports for org.springframework.data.mongodb.core.query.Criteria.where
and Query.query
to make the query more readable.
The query should return a List
or Flux
of Person
objects that meet the specified criteria.
The rest of this section lists the methods of the Criteria
and Query
classes that correspond to the operators provided in MongoDB.
Most methods return the Criteria
object, to provide a fluent style for the API.
Methods of the Criteria Class
The Criteria
class provides the following methods, all of which correspond to operators in MongoDB:
-
Criteria
all(Object o)
Creates a criterion using the$all
operator -
Criteria
and(String key)
Adds a chainedCriteria
with the specifiedkey
to the currentCriteria
and returns the newly created one -
Criteria
andOperator(Criteria… criteria)
Creates an and query using the$and
operator for all of the provided criteria (requires MongoDB 2.0 or later) -
Criteria
andOperator(Collection<Criteria> criteria)
Creates an and query using the$and
operator for all of the provided criteria (requires MongoDB 2.0 or later) -
Criteria
elemMatch(Criteria c)
Creates a criterion using the$elemMatch
operator -
Criteria
exists(boolean b)
Creates a criterion using the$exists
operator -
Criteria
gt(Object o)
Creates a criterion using the$gt
operator -
Criteria
gte(Object o)
Creates a criterion using the$gte
operator -
Criteria
in(Object… o)
Creates a criterion using the$in
operator for a varargs argument. -
Criteria
in(Collection<?> collection)
Creates a criterion using the$in
operator using a collection -
Criteria
is(Object o)
Creates a criterion using field matching ({ key:value }
). If the specified value is a document, the order of the fields and exact equality in the document matters. -
Criteria
lt(Object o)
Creates a criterion using the$lt
operator -
Criteria
lte(Object o)
Creates a criterion using the$lte
operator -
Criteria
mod(Number value, Number remainder)
Creates a criterion using the$mod
operator -
Criteria
ne(Object o)
Creates a criterion using the$ne
operator -
Criteria
nin(Object… o)
Creates a criterion using the$nin
operator -
Criteria
norOperator(Criteria… criteria)
Creates an nor query using the$nor
operator for all of the provided criteria -
Criteria
norOperator(Collection<Criteria> criteria)
Creates an nor query using the$nor
operator for all of the provided criteria -
Criteria
not()
Creates a criterion using the$not
meta operator which affects the clause directly following -
Criteria
orOperator(Criteria… criteria)
Creates an or query using the$or
operator for all of the provided criteria -
Criteria
orOperator(Collection<Criteria> criteria)
Creates an or query using the$or
operator for all of the provided criteria -
Criteria
regex(String re)
Creates a criterion using a$regex
-
Criteria
sampleRate(double sampleRate)
Creates a criterion using the$sampleRate
operator -
Criteria
size(int s)
Creates a criterion using the$size
operator -
Criteria
type(int t)
Creates a criterion using the$type
operator -
Criteria
matchingDocumentStructure(MongoJsonSchema schema)
Creates a criterion using the$jsonSchema
operator for JSON schema criteria.$jsonSchema
can only be applied on the top level of a query and not property specific. Use theproperties
attribute of the schema to match against nested fields. -
Criteria
bits() is the gateway to MongoDB bitwise query operators like$bitsAllClear
.
The Criteria class also provides the following methods for geospatial queries.
-
Criteria
within(Circle circle)
Creates a geospatial criterion using$geoWithin $center
operators. -
Criteria
within(Box box)
Creates a geospatial criterion using a$geoWithin $box
operation. -
Criteria
withinSphere(Circle circle)
Creates a geospatial criterion using$geoWithin $center
operators. -
Criteria
near(Point point)
Creates a geospatial criterion using a$near
operation -
Criteria
nearSphere(Point point)
Creates a geospatial criterion using$nearSphere$center
operations. This is only available for MongoDB 1.7 and higher. -
Criteria
minDistance(double minDistance)
Creates a geospatial criterion using the$minDistance
operation, for use with $near. -
Criteria
maxDistance(double maxDistance)
Creates a geospatial criterion using the$maxDistance
operation, for use with $near.
The Query
class has some additional methods that allow to select certain fields as well as to limit and sort the result.
Methods of the Query class
-
Query
addCriteria(Criteria criteria)
used to add additional criteria to the query -
Field
fields()
used to define fields to be included in the query results -
Query
limit(int limit)
used to limit the size of the returned results to the provided limit (used for paging) -
Query
skip(int skip)
used to skip the provided number of documents in the results (used for paging) -
Query
with(Sort sort)
used to provide sort definition for the results -
Query
with(ScrollPosition position)
used to provide a scroll position (Offset- or Keyset-based pagination) to start or resume aScroll
The template API allows direct usage of result projections that enable you to map queries against a given domain type while projecting the operation result onto another one as outlined below.
class
template.query(SWCharacter.class)
.as(Jedi.class)
For more information on result projections please refer to the Projections section of the documentation.
Selecting fields
MongoDB supports projecting fields returned by a query.
A projection can include and exclude fields (the _id
field is always included unless explicitly excluded) based on their name.
public class Person {
@Id String id;
String firstname;
@Field("last_name")
String lastname;
Address address;
}
query.fields().include("lastname"); (1)
query.fields().exclude("id").include("lastname") (2)
query.fields().include("address") (3)
query.fields().include("address.city") (4)
1 | Result will contain both _id and last_name via { "last_name" : 1 } . |
2 | Result will only contain the last_name via { "_id" : 0, "last_name" : 1 } . |
3 | Result will contain the _id and entire address object via { "address" : 1 } . |
4 | Result will contain the _id and and address object that only contains the city field via { "address.city" : 1 } . |
Starting with MongoDB 4.4 you can use aggregation expressions for field projections as shown below:
query.fields()
.project(MongoExpression.create("'$toUpper' : '$last_name'")) (1)
.as("last_name"); (2)
query.fields()
.project(StringOperators.valueOf("lastname").toUpper()) (3)
.as("last_name");
query.fields()
.project(AggregationSpELExpression.expressionOf("toUpper(lastname)")) (4)
.as("last_name");
1 | Use a native expression. The used field name must refer to field names within the database document. |
2 | Assign the field name to which the expression result is projected. The resulting field name is not mapped against the domain model. |
3 | Use an AggregationExpression . Other than native MongoExpression , field names are mapped to the ones used in the domain model. |
4 | Use SpEL along with an AggregationExpression to invoke expression functions. Field names are mapped to the ones used in the domain model. |
@Query(fields="…")
allows usage of expression field projections at Repository
level as described in MongoDB JSON-based Query Methods and Field Restriction.
Additional Query Options
MongoDB offers various ways of applying meta information, like a comment or a batch size, to a query.Using the Query
API
directly there are several methods for those options.
Hints
Index hints can be applied in two ways, using the index name or its field definition.
template.query(Person.class)
.matching(query("...").withHint("index-to-use"));
template.query(Person.class)
.matching(query("...").withHint("{ firstname : 1 }"));
Cursor Batch Size
The cursor batch size defines the number of documents to return in each response batch.
Query query = query(where("firstname").is("luke"))
.cursorBatchSize(100)
Collations
Using collations with collection operations is a matter of specifying a Collation
instance in your query or operation options, as the following two examples show:
Collation collation = Collation.of("de");
Query query = new Query(Criteria.where("firstName").is("Amél"))
.collation(collation);
List<Person> results = template.find(query, Person.class);
Read Preference
The ReadPreference
to use can be set directly on the Query
object to be run as outlined below.
template.find(Person.class)
.matching(query(where(...)).withReadPreference(ReadPreference.secondary()))
.all();
The preference set on the Query instance will supersede the default ReadPreference of MongoTemplate .
|
Query Distinct Values
MongoDB provides an operation to obtain distinct values for a single field by using a query from the resulting documents. Resulting values are not required to have the same data type, nor is the feature limited to simple types. For retrieval, the actual result type does matter for the sake of conversion and typing. The following example shows how to query for distinct values:
template.query(Person.class) (1)
.distinct("lastname") (2)
.all(); (3)
1 | Query the Person collection. |
2 | Select distinct values of the lastname field. The field name is mapped according to the domain types property declaration, taking potential @Field annotations into account. |
3 | Retrieve all distinct values as a List of Object (due to no explicit result type being specified). |
Retrieving distinct values into a Collection
of Object
is the most flexible way, as it tries to determine the property value of the domain type and convert results to the desired type or mapping Document
structures.
Sometimes, when all values of the desired field are fixed to a certain type, it is more convenient to directly obtain a correctly typed Collection
, as shown in the following example:
template.query(Person.class) (1)
.distinct("lastname") (2)
.as(String.class) (3)
.all(); (4)
1 | Query the collection of Person . |
2 | Select distinct values of the lastname field. The fieldname is mapped according to the domain types property declaration, taking potential @Field annotations into account. |
3 | Retrieved values are converted into the desired target type — in this case, String . It is also possible to map the values to a more complex type if the stored field contains a document. |
4 | Retrieve all distinct values as a List of String . If the type cannot be converted into the desired target type, this method throws a DataAccessException . |
+= GeoSpatial Queries
MongoDB supports GeoSpatial queries through the use of operators such as $near
, $within
, geoWithin
, and $nearSphere
. Methods specific to geospatial queries are available on the Criteria
class. There are also a few shape classes (Box
, Circle
, and Point
) that are used in conjunction with geospatial related Criteria
methods.
Using GeoSpatial queries requires attention when used within MongoDB transactions, see Special behavior inside transactions. |
To understand how to perform GeoSpatial queries, consider the following Venue
class (taken from the integration tests and relying on the rich MappingMongoConverter
):
Venue.java
@Document(collection="newyork")
public class Venue {
@Id
private String id;
private String name;
private double[] location;
@PersistenceConstructor
Venue(String name, double[] location) {
super();
this.name = name;
this.location = location;
}
public Venue(String name, double x, double y) {
super();
this.name = name;
this.location = new double[] { x, y };
}
public String getName() {
return name;
}
public double[] getLocation() {
return location;
}
@Override
public String toString() {
return "Venue [id=" + id + ", name=" + name + ", location="
+ Arrays.toString(location) + "]";
}
}
To find locations within a Circle
, you can use the following query:
Circle circle = new Circle(-73.99171, 40.738868, 0.01);
List<Venue> venues =
template.find(new Query(Criteria.where("location").within(circle)), Venue.class);
To find venues within a Circle
using spherical coordinates, you can use the following query:
Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);
List<Venue> venues =
template.find(new Query(Criteria.where("location").withinSphere(circle)), Venue.class);
To find venues within a Box
, you can use the following query:
//lower-left then upper-right
Box box = new Box(new Point(-73.99756, 40.73083), new Point(-73.988135, 40.741404));
List<Venue> venues =
template.find(new Query(Criteria.where("location").within(box)), Venue.class);
To find venues near a Point
, you can use the following queries:
Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(Criteria.where("location").near(point).maxDistance(0.01)), Venue.class);
Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(Criteria.where("location").near(point).minDistance(0.01).maxDistance(100)), Venue.class);
To find venues near a Point
using spherical coordinates, you can use the following query:
Point point = new Point(-73.99171, 40.738868);
List<Venue> venues =
template.find(new Query(
Criteria.where("location").nearSphere(point).maxDistance(0.003712240453784)),
Venue.class);
Geo-near Queries
Changed in 2.2! Spring Data MongoDB 2.2 The calculated distance (the Target types may contain a property named after the returned distance to (additionally) read it back directly into the domain type as shown below.
|
MongoDB supports querying the database for geo locations and calculating the distance from a given origin at the same time. With geo-near queries, you can express queries such as "find all restaurants in the surrounding 10 miles". To let you do so, MongoOperations
provides geoNear(…)
methods that take a NearQuery
as an argument (as well as the already familiar entity type and collection), as shown in the following example:
Point location = new Point(-73.99171, 40.738868);
NearQuery query = NearQuery.near(location).maxDistance(new Distance(10, Metrics.MILES));
GeoResults<Restaurant> = operations.geoNear(query, Restaurant.class);
We use the NearQuery
builder API to set up a query to return all Restaurant
instances surrounding the given Point
out to 10 miles.
The Metrics
enum used here actually implements an interface so that other metrics could be plugged into a distance as well.
A Metric
is backed by a multiplier to transform the distance value of the given metric into native distances.
The sample shown here would consider the 10 to be miles. Using one of the built-in metrics (miles and kilometers) automatically triggers the spherical flag to be set on the query.
If you want to avoid that, pass plain double
values into maxDistance(…)
.
For more information, see the Javadoc of NearQuery
and Distance
.
The geo-near operations return a GeoResults
wrapper object that encapsulates GeoResult
instances.
Wrapping GeoResults
allows accessing the average distance of all results.
A single GeoResult
object carries the entity found plus its distance from the origin.
GeoJSON Support
MongoDB supports GeoJSON and simple (legacy) coordinate pairs for geospatial data. Those formats can both be used for storing as well as querying data. See the MongoDB manual on GeoJSON support to learn about requirements and restrictions.
GeoJSON Types in Domain Classes
Usage of GeoJSON types in domain classes is straightforward. The org.springframework.data.mongodb.core.geo
package contains types such as GeoJsonPoint
, GeoJsonPolygon
, and others. These types are extend the existing org.springframework.data.geo
types. The following example uses a GeoJsonPoint
:
public class Store {
String id;
/**
* { "type" : "Point", "coordinates" : [ x, y ] }
*/
GeoJsonPoint location;
}
If the |
GeoJSON Types in Repository Query Methods
Using GeoJSON types as repository query parameters forces usage of the $geometry
operator when creating the query, as the following example shows:
public interface StoreRepository extends CrudRepository<Store, String> {
List<Store> findByLocationWithin(Polygon polygon); (1)
}
/*
* {
* "location": {
* "$geoWithin": {
* "$geometry": {
* "type": "Polygon",
* "coordinates": [
* [
* [-73.992514,40.758934],
* [-73.961138,40.760348],
* [-73.991658,40.730006],
* [-73.992514,40.758934]
* ]
* ]
* }
* }
* }
* }
*/
repo.findByLocationWithin( (2)
new GeoJsonPolygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730006),
new Point(-73.992514, 40.758934))); (3)
/*
* {
* "location" : {
* "$geoWithin" : {
* "$polygon" : [ [-73.992514,40.758934] , [-73.961138,40.760348] , [-73.991658,40.730006] ]
* }
* }
* }
*/
repo.findByLocationWithin( (4)
new Polygon(
new Point(-73.992514, 40.758934),
new Point(-73.961138, 40.760348),
new Point(-73.991658, 40.730006)));
1 | Repository method definition using the commons type allows calling it with both the GeoJSON and the legacy format. |
2 | Use GeoJSON type to make use of $geometry operator. |
3 | Note that GeoJSON polygons need to define a closed ring. |
4 | Use the legacy format $polygon operator. |
Metrics and Distance calculation
Then MongoDB $geoNear
operator allows usage of a GeoJSON Point or legacy coordinate pairs.
NearQuery.near(new Point(-73.99171, 40.738868))
{
"$geoNear": {
//...
"near": [-73.99171, 40.738868]
}
}
NearQuery.near(new GeoJsonPoint(-73.99171, 40.738868))
{
"$geoNear": {
//...
"near": { "type": "Point", "coordinates": [-73.99171, 40.738868] }
}
}
Though syntactically different the server is fine accepting both no matter what format the target Document within the collection is using.
There is a huge difference in the distance calculation. Using the legacy format operates upon Radians on an Earth like sphere, whereas the GeoJSON format uses Meters. |
To avoid a serious headache make sure to set the Metric
to the desired unit of measure which ensures the
distance to be calculated correctly.
In other words:
Assume you’ve got 5 Documents like the ones below:
{
"_id" : ObjectId("5c10f3735d38908db52796a5"),
"name" : "Penn Station",
"location" : { "type" : "Point", "coordinates" : [ -73.99408, 40.75057 ] }
}
{
"_id" : ObjectId("5c10f3735d38908db52796a6"),
"name" : "10gen Office",
"location" : { "type" : "Point", "coordinates" : [ -73.99171, 40.738868 ] }
}
{
"_id" : ObjectId("5c10f3735d38908db52796a9"),
"name" : "City Bakery ",
"location" : { "type" : "Point", "coordinates" : [ -73.992491, 40.738673 ] }
}
{
"_id" : ObjectId("5c10f3735d38908db52796aa"),
"name" : "Splash Bar",
"location" : { "type" : "Point", "coordinates" : [ -73.992491, 40.738673 ] }
}
{
"_id" : ObjectId("5c10f3735d38908db52796ab"),
"name" : "Momofuku Milk Bar",
"location" : { "type" : "Point", "coordinates" : [ -73.985839, 40.731698 ] }
}
Fetching all Documents within a 400 Meter radius from [-73.99171, 40.738868]
would look like this using
GeoJSON:
{
"$geoNear": {
"maxDistance": 400, (1)
"num": 10,
"near": { type: "Point", coordinates: [-73.99171, 40.738868] },
"spherical":true, (2)
"key": "location",
"distanceField": "distance"
}
}
Returning the following 3 Documents:
{
"_id" : ObjectId("5c10f3735d38908db52796a6"),
"name" : "10gen Office",
"location" : { "type" : "Point", "coordinates" : [ -73.99171, 40.738868 ] }
"distance" : 0.0 (3)
}
{
"_id" : ObjectId("5c10f3735d38908db52796a9"),
"name" : "City Bakery ",
"location" : { "type" : "Point", "coordinates" : [ -73.992491, 40.738673 ] }
"distance" : 69.3582262492474 (3)
}
{
"_id" : ObjectId("5c10f3735d38908db52796aa"),
"name" : "Splash Bar",
"location" : { "type" : "Point", "coordinates" : [ -73.992491, 40.738673 ] }
"distance" : 69.3582262492474 (3)
}
1 | Maximum distance from center point in Meters. |
2 | GeoJSON always operates upon a sphere. |
3 | Distance from center point in Meters. |
Now, when using legacy coordinate pairs one operates upon Radians as discussed before. So we use Metrics#KILOMETERS
when constructing the `$geoNear
command. The Metric
makes sure the distance multiplier is set correctly.
{
"$geoNear": {
"maxDistance": 0.0000627142377, (1)
"distanceMultiplier": 6378.137, (2)
"num": 10,
"near": [-73.99171, 40.738868],
"spherical":true, (3)
"key": "location",
"distanceField": "distance"
}
}
Returning the 3 Documents just like the GeoJSON variant:
{
"_id" : ObjectId("5c10f3735d38908db52796a6"),
"name" : "10gen Office",
"location" : { "type" : "Point", "coordinates" : [ -73.99171, 40.738868 ] }
"distance" : 0.0 (4)
}
{
"_id" : ObjectId("5c10f3735d38908db52796a9"),
"name" : "City Bakery ",
"location" : { "type" : "Point", "coordinates" : [ -73.992491, 40.738673 ] }
"distance" : 0.0693586286032982 (4)
}
{
"_id" : ObjectId("5c10f3735d38908db52796aa"),
"name" : "Splash Bar",
"location" : { "type" : "Point", "coordinates" : [ -73.992491, 40.738673 ] }
"distance" : 0.0693586286032982 (4)
}
1 | Maximum distance from center point in Radians. |
2 | The distance multiplier so we get Kilometers as resulting distance. |
3 | Make sure we operate on a 2d_sphere index. |
4 | Distance from center point in Kilometers - take it times 1000 to match Meters of the GeoJSON variant. |
Full-text Search
Since version 2.6 of MongoDB, you can run full-text queries by using the $text
operator. Methods and operations specific to full-text queries are available in TextQuery
and TextCriteria
. When doing full text search, see the MongoDB reference for its behavior and limitations.
Before you can actually use full-text search, you must set up the search index correctly. See Text Index for more detail on how to create index structures. The following example shows how to set up a full-text search:
db.foo.createIndex(
{
title : "text",
content : "text"
},
{
weights : {
title : 3
}
}
)
A query searching for coffee cake
can be defined and run as follows:
Query query = TextQuery
.queryText(new TextCriteria().matchingAny("coffee", "cake"));
List<Document> page = template.find(query, Document.class);
To sort results by relevance according to the weights
use TextQuery.sortByScore
.
Query query = TextQuery
.queryText(new TextCriteria().matchingAny("coffee", "cake"))
.sortByScore() (1)
.includeScore(); (2)
List<Document> page = template.find(query, Document.class);
1 | Use the score property for sorting results by relevance which triggers .sort({'score': {'$meta': 'textScore'}}) . |
2 | Use TextQuery.includeScore() to include the calculated relevance in the resulting Document . |
You can exclude search terms by prefixing the term with -
or by using notMatching
, as shown in the following example (note that the two lines have the same effect and are thus redundant):
// search for 'coffee' and not 'cake'
TextQuery.queryText(new TextCriteria().matching("coffee").matching("-cake"));
TextQuery.queryText(new TextCriteria().matching("coffee").notMatching("cake"));
TextCriteria.matching
takes the provided term as is.
Therefore, you can define phrases by putting them between double quotation marks (for example, \"coffee cake\")
or using by TextCriteria.phrase.
The following example shows both ways of defining a phrase:
// search for phrase 'coffee cake'
TextQuery.queryText(new TextCriteria().matching("\"coffee cake\""));
TextQuery.queryText(new TextCriteria().phrase("coffee cake"));
You can set flags for $caseSensitive
and $diacriticSensitive
by using the corresponding methods on TextCriteria
.
Note that these two optional flags have been introduced in MongoDB 3.2 and are not included in the query unless explicitly set.
Query by Example
Query by Example can be used on the Template API level run example queries.
The following snipped shows how to query by example:
Person probe = new Person();
probe.lastname = "stark";
Example example = Example.of(probe);
Query query = new Query(new Criteria().alike(example));
List<Person> result = template.find(query, Person.class);
By default Example
is strictly typed. This means that the mapped query has an included type match, restricting it to probe assignable types.
For example, when sticking with the default type key (_class
), the query has restrictions such as (_class : { $in : [ com.acme.Person] }
).
By using the UntypedExampleMatcher
, it is possible to bypass the default behavior and skip the type restriction. So, as long as field names match, nearly any domain type can be used as the probe for creating the reference, as the following example shows:
class JustAnArbitraryClassWithMatchingFieldName {
@Field("lastname") String value;
}
JustAnArbitraryClassWithMatchingFieldNames probe = new JustAnArbitraryClassWithMatchingFieldNames();
probe.value = "stark";
Example example = Example.of(probe, UntypedExampleMatcher.matching());
Query query = new Query(new Criteria().alike(example));
List<Person> result = template.find(query, Person.class);
When including |
Also, keep in mind that using |
Spring Data MongoDB provides support for different matching options:
StringMatcher
options
Matching | Logical result |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Query a collection for matching JSON Schema
You can use a schema to query any collection for documents that match a given structure defined by a JSON schema, as the following example shows:
$jsonSchema
MongoJsonSchema schema = MongoJsonSchema.builder().required("firstname", "lastname").build();
template.find(query(matchingDocumentStructure(schema)), Person.class);
Please refer to the JSON Schema section to learn more about the schema support in Spring Data MongoDB.