For the latest stable version, please use Spring Framework 6.2.0! |
Using the @Configuration
annotation
@Configuration
is a class-level annotation indicating that an object is a source of
bean definitions. @Configuration
classes declare beans through @Bean
-annotated
methods. Calls to @Bean
methods on @Configuration
classes can also be used to define
inter-bean dependencies. See Basic Concepts: @Bean
and @Configuration
for a general introduction.
Injecting Inter-bean Dependencies
When beans have dependencies on one another, expressing that dependency is as simple as having one bean method call another, as the following example shows:
-
Java
-
Kotlin
@Configuration
public class AppConfig {
@Bean
public BeanOne beanOne() {
return new BeanOne(beanTwo());
}
@Bean
public BeanTwo beanTwo() {
return new BeanTwo();
}
}
@Configuration
class AppConfig {
@Bean
fun beanOne() = BeanOne(beanTwo())
@Bean
fun beanTwo() = BeanTwo()
}
In the preceding example, beanOne
receives a reference to beanTwo
through constructor
injection.
This method of declaring inter-bean dependencies works only when the @Bean method
is declared within a @Configuration class. You cannot declare inter-bean dependencies
by using plain @Component classes.
|
Lookup Method Injection
As noted earlier, lookup method injection is an advanced feature that you should use rarely. It is useful in cases where a singleton-scoped bean has a dependency on a prototype-scoped bean. Using Java for this type of configuration provides a natural means for implementing this pattern. The following example shows how to use lookup method injection:
-
Java
-
Kotlin
public abstract class CommandManager {
public Object process(Object commandState) {
// grab a new instance of the appropriate Command interface
Command command = createCommand();
// set the state on the (hopefully brand new) Command instance
command.setState(commandState);
return command.execute();
}
// okay... but where is the implementation of this method?
protected abstract Command createCommand();
}
abstract class CommandManager {
fun process(commandState: Any): Any {
// grab a new instance of the appropriate Command interface
val command = createCommand()
// set the state on the (hopefully brand new) Command instance
command.setState(commandState)
return command.execute()
}
// okay... but where is the implementation of this method?
protected abstract fun createCommand(): Command
}
By using Java configuration, you can create a subclass of CommandManager
where
the abstract createCommand()
method is overridden in such a way that it looks up a new
(prototype) command object. The following example shows how to do so:
-
Java
-
Kotlin
@Bean
@Scope("prototype")
public AsyncCommand asyncCommand() {
AsyncCommand command = new AsyncCommand();
// inject dependencies here as required
return command;
}
@Bean
public CommandManager commandManager() {
// return new anonymous implementation of CommandManager with createCommand()
// overridden to return a new prototype Command object
return new CommandManager() {
protected Command createCommand() {
return asyncCommand();
}
}
}
@Bean
@Scope("prototype")
fun asyncCommand(): AsyncCommand {
val command = AsyncCommand()
// inject dependencies here as required
return command
}
@Bean
fun commandManager(): CommandManager {
// return new anonymous implementation of CommandManager with createCommand()
// overridden to return a new prototype Command object
return object : CommandManager() {
override fun createCommand(): Command {
return asyncCommand()
}
}
}
Further Information About How Java-based Configuration Works Internally
Consider the following example, which shows a @Bean
annotated method being called twice:
-
Java
-
Kotlin
@Configuration
public class AppConfig {
@Bean
public ClientService clientService1() {
ClientServiceImpl clientService = new ClientServiceImpl();
clientService.setClientDao(clientDao());
return clientService;
}
@Bean
public ClientService clientService2() {
ClientServiceImpl clientService = new ClientServiceImpl();
clientService.setClientDao(clientDao());
return clientService;
}
@Bean
public ClientDao clientDao() {
return new ClientDaoImpl();
}
}
@Configuration
class AppConfig {
@Bean
fun clientService1(): ClientService {
return ClientServiceImpl().apply {
clientDao = clientDao()
}
}
@Bean
fun clientService2(): ClientService {
return ClientServiceImpl().apply {
clientDao = clientDao()
}
}
@Bean
fun clientDao(): ClientDao {
return ClientDaoImpl()
}
}
clientDao()
has been called once in clientService1()
and once in clientService2()
.
Since this method creates a new instance of ClientDaoImpl
and returns it, you would
normally expect to have two instances (one for each service). That definitely would be
problematic: In Spring, instantiated beans have a singleton
scope by default. This is
where the magic comes in: All @Configuration
classes are subclassed at startup-time
with CGLIB
. In the subclass, the child method checks the container first for any
cached (scoped) beans before it calls the parent method and creates a new instance.
The behavior could be different according to the scope of your bean. We are talking about singletons here. |
It is not necessary to add CGLIB to your classpath because CGLIB classes are repackaged
under the |
There are a few restrictions due to the fact that CGLIB dynamically adds features at
startup-time. In particular, configuration classes must not be final. However, any
constructors are allowed on configuration classes, including the use of If you prefer to avoid any CGLIB-imposed limitations, consider declaring your |