This version is still in development and is not considered stable yet. For the latest stable version, please use spring-cloud-stream 4.2.0! |
Multi binders with Kafka Streams based binders and regular Kafka Binder
You can have an application where you have both a function/consumer/supplier that is based on the regular Kafka binder and a Kafka Streams based processor. However, you cannot mix both of them within a single function or consumer.
Here is an example, where you have both binder based components within the same application.
@Bean
public Function<String, String> process() {
return s -> s;
}
@Bean
public Function<KStream<Object, String>, KStream<?, WordCount>> kstreamProcess() {
return input -> input;
}
This is the relevant parts from the configuration:
spring.cloud.function.definition=process;kstreamProcess
spring.cloud.stream.bindings.process-in-0.destination=foo
spring.cloud.stream.bindings.process-out-0.destination=bar
spring.cloud.stream.bindings.kstreamProcess-in-0.destination=bar
spring.cloud.stream.bindings.kstreamProcess-out-0.destination=foobar
Things become a bit more complex if you have the same application as above, but is dealing with two different Kafka clusters, for e.g. the regular process
is acting upon both Kafka cluster 1 and cluster 2 (receiving data from cluster-1 and sending to cluster-2) and the Kafka Streams processor is acting upon Kafka cluster 2.
Then you have to use the multi binder facilities provided by Spring Cloud Stream.
Here is how your configuration may change in that scenario.
# multi binder configuration
spring.cloud.stream.binders.kafka1.type: kafka
spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.streams.binder.brokers=${kafkaCluster-1} #Replace kafkaCluster-1 with the approprate IP of the cluster
spring.cloud.stream.binders.kafka2.type: kafka
spring.cloud.stream.binders.kafka2.environment.spring.cloud.stream.kafka.streams.binder.brokers=${kafkaCluster-2} #Replace kafkaCluster-2 with the approprate IP of the cluster
spring.cloud.stream.binders.kafka3.type: kstream
spring.cloud.stream.binders.kafka3.environment.spring.cloud.stream.kafka.streams.binder.brokers=${kafkaCluster-2} #Replace kafkaCluster-2 with the approprate IP of the cluster
spring.cloud.function.definition=process;kstreamProcess
# From cluster 1 to cluster 2 with regular process function
spring.cloud.stream.bindings.process-in-0.destination=foo
spring.cloud.stream.bindings.process-in-0.binder=kafka1 # source from cluster 1
spring.cloud.stream.bindings.process-out-0.destination=bar
spring.cloud.stream.bindings.process-out-0.binder=kafka2 # send to cluster 2
# Kafka Streams processor on cluster 2
spring.cloud.stream.bindings.kstreamProcess-in-0.destination=bar
spring.cloud.stream.bindings.kstreamProcess-in-0.binder=kafka3
spring.cloud.stream.bindings.kstreamProcess-out-0.destination=foobar
spring.cloud.stream.bindings.kstreamProcess-out-0.binder=kafka3
Pay attention to the above configuration.
We have two kinds of binders, but 3 binders all in all, first one is the regular Kafka binder based on cluster 1 (kafka1
), then another Kafka binder based on cluster 2 (kafka2
) and finally the kstream
one (kafka3
).
The first processor in the application receives data from kafka1
and publishes to kafka2
where both binders are based on regular Kafka binder but differnt clusters.
The second processor, which is a Kafka Streams processor consumes data from kafka3
which is the same cluster as kafka2
, but a different binder type.
Since there are three different binder types available in the Kafka Streams family of binders - kstream
, ktable
and globalktable
- if your application has multiple bindings based on any of these binders, that needs to be explicitly provided as the binder type.
For e.g if you have a processor as below,
@Bean
public Function<KStream<Long, Order>,
Function<KTable<Long, Customer>,
Function<GlobalKTable<Long, Product>, KStream<Long, EnrichedOrder>>>> enrichOrder() {
...
}
then, this has to be configured in a multi binder scenario as the following. Please note that this is only needed if you have a true multi-binder scenario where there are multiple processors dealing with multiple clusters within a single application. In that case, the binders need to be explicitly provided with the bindings to distinguish from other processor’s binder types and clusters.
spring.cloud.stream.binders.kafka1.type: kstream
spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.streams.binder.brokers=${kafkaCluster-2}
spring.cloud.stream.binders.kafka2.type: ktable
spring.cloud.stream.binders.kafka2.environment.spring.cloud.stream.kafka.streams.binder.brokers=${kafkaCluster-2}
spring.cloud.stream.binders.kafka3.type: globalktable
spring.cloud.stream.binders.kafka3.environment.spring.cloud.stream.kafka.streams.binder.brokers=${kafkaCluster-2}
spring.cloud.stream.bindings.enrichOrder-in-0.binder=kafka1 #kstream
spring.cloud.stream.bindings.enrichOrder-in-1.binder=kafka2 #ktablr
spring.cloud.stream.bindings.enrichOrder-in-2.binder=kafka3 #globalktable
spring.cloud.stream.bindings.enrichOrder-out-0.binder=kafka1 #kstream
# rest of the configuration is omitted.