This version is still in development and is not considered stable yet. For the latest stable version, please use Spring Framework 6.2.1! |
Functional Endpoints
Spring WebFlux includes WebFlux.fn, a lightweight functional programming model in which functions are used to route and handle requests and contracts are designed for immutability. It is an alternative to the annotation-based programming model but otherwise runs on the same Reactive Core foundation.
Overview
In WebFlux.fn, an HTTP request is handled with a HandlerFunction
: a function that takes
ServerRequest
and returns a delayed ServerResponse
(i.e. Mono<ServerResponse>
).
Both the request and the response object have immutable contracts that offer JDK 8-friendly
access to the HTTP request and response.
HandlerFunction
is the equivalent of the body of a @RequestMapping
method in the
annotation-based programming model.
Incoming requests are routed to a handler function with a RouterFunction
: a function that
takes ServerRequest
and returns a delayed HandlerFunction
(i.e. Mono<HandlerFunction>
).
When the router function matches, a handler function is returned; otherwise an empty Mono.
RouterFunction
is the equivalent of a @RequestMapping
annotation, but with the major
difference that router functions provide not just data, but also behavior.
RouterFunctions.route()
provides a router builder that facilitates the creation of routers,
as the following example shows:
-
Java
-
Kotlin
import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.RequestPredicates.*;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;
PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);
RouterFunction<ServerResponse> route = route() (1)
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson)
.GET("/person", accept(APPLICATION_JSON), handler::listPeople)
.POST("/person", handler::createPerson)
.build();
public class PersonHandler {
// ...
public Mono<ServerResponse> listPeople(ServerRequest request) {
// ...
}
public Mono<ServerResponse> createPerson(ServerRequest request) {
// ...
}
public Mono<ServerResponse> getPerson(ServerRequest request) {
// ...
}
}
1 | Create router using route() . |
val repository: PersonRepository = ...
val handler = PersonHandler(repository)
val route = coRouter { (1)
accept(APPLICATION_JSON).nest {
GET("/person/{id}", handler::getPerson)
GET("/person", handler::listPeople)
}
POST("/person", handler::createPerson)
}
class PersonHandler(private val repository: PersonRepository) {
// ...
suspend fun listPeople(request: ServerRequest): ServerResponse {
// ...
}
suspend fun createPerson(request: ServerRequest): ServerResponse {
// ...
}
suspend fun getPerson(request: ServerRequest): ServerResponse {
// ...
}
}
1 | Create router using Coroutines router DSL; a Reactive alternative is also available via router { } . |
One way to run a RouterFunction
is to turn it into an HttpHandler
and install it
through one of the built-in server adapters:
-
RouterFunctions.toHttpHandler(RouterFunction)
-
RouterFunctions.toHttpHandler(RouterFunction, HandlerStrategies)
Most applications can run through the WebFlux Java configuration, see Running a Server.
HandlerFunction
ServerRequest
and ServerResponse
are immutable interfaces that offer JDK 8-friendly
access to the HTTP request and response.
Both request and response provide Reactive Streams back pressure
against the body streams.
The request body is represented with a Reactor Flux
or Mono
.
The response body is represented with any Reactive Streams Publisher
, including Flux
and Mono
.
For more on that, see Reactive Libraries.
ServerRequest
ServerRequest
provides access to the HTTP method, URI, headers, and query parameters,
while access to the body is provided through the body
methods.
The following example extracts the request body to a Mono<String>
:
-
Java
-
Kotlin
Mono<String> string = request.bodyToMono(String.class);
val string = request.awaitBody<String>()
The following example extracts the body to a Flux<Person>
(or a Flow<Person>
in Kotlin),
where Person
objects are decoded from some serialized form, such as JSON or XML:
-
Java
-
Kotlin
Flux<Person> people = request.bodyToFlux(Person.class);
val people = request.bodyToFlow<Person>()
The preceding examples are shortcuts that use the more general ServerRequest.body(BodyExtractor)
,
which accepts the BodyExtractor
functional strategy interface. The utility class
BodyExtractors
provides access to a number of instances. For example, the preceding examples can
also be written as follows:
-
Java
-
Kotlin
Mono<String> string = request.body(BodyExtractors.toMono(String.class));
Flux<Person> people = request.body(BodyExtractors.toFlux(Person.class));
val string = request.body(BodyExtractors.toMono(String::class.java)).awaitSingle()
val people = request.body(BodyExtractors.toFlux(Person::class.java)).asFlow()
The following example shows how to access form data:
-
Java
-
Kotlin
Mono<MultiValueMap<String, String>> map = request.formData();
val map = request.awaitFormData()
The following example shows how to access multipart data as a map:
-
Java
-
Kotlin
Mono<MultiValueMap<String, Part>> map = request.multipartData();
val map = request.awaitMultipartData()
The following example shows how to access multipart data, one at a time, in streaming fashion:
-
Java
-
Kotlin
Flux<PartEvent> allPartEvents = request.bodyToFlux(PartEvent.class);
allPartsEvents.windowUntil(PartEvent::isLast)
.concatMap(p -> p.switchOnFirst((signal, partEvents) -> {
if (signal.hasValue()) {
PartEvent event = signal.get();
if (event instanceof FormPartEvent formEvent) {
String value = formEvent.value();
// handle form field
}
else if (event instanceof FilePartEvent fileEvent) {
String filename = fileEvent.filename();
Flux<DataBuffer> contents = partEvents.map(PartEvent::content);
// handle file upload
}
else {
return Mono.error(new RuntimeException("Unexpected event: " + event));
}
}
else {
return partEvents; // either complete or error signal
}
}));
val parts = request.bodyToFlux<PartEvent>()
allPartsEvents.windowUntil(PartEvent::isLast)
.concatMap {
it.switchOnFirst { signal, partEvents ->
if (signal.hasValue()) {
val event = signal.get()
if (event is FormPartEvent) {
val value: String = event.value();
// handle form field
} else if (event is FilePartEvent) {
val filename: String = event.filename();
val contents: Flux<DataBuffer> = partEvents.map(PartEvent::content);
// handle file upload
} else {
return Mono.error(RuntimeException("Unexpected event: " + event));
}
} else {
return partEvents; // either complete or error signal
}
}
}
}
Note that the body contents of the PartEvent
objects must be completely consumed, relayed, or released to avoid memory leaks.
ServerResponse
ServerResponse
provides access to the HTTP response and, since it is immutable, you can use
a build
method to create it. You can use the builder to set the response status, to add response
headers, or to provide a body. The following example creates a 200 (OK) response with JSON
content:
-
Java
-
Kotlin
Mono<Person> person = ...
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).body(person, Person.class);
val person: Person = ...
ServerResponse.ok().contentType(MediaType.APPLICATION_JSON).bodyValue(person)
The following example shows how to build a 201 (CREATED) response with a Location
header and no body:
-
Java
-
Kotlin
URI location = ...
ServerResponse.created(location).build();
val location: URI = ...
ServerResponse.created(location).build()
Depending on the codec used, it is possible to pass hint parameters to customize how the body is serialized or deserialized. For example, to specify a Jackson JSON view:
-
Java
-
Kotlin
ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT, MyJacksonView.class).body(...);
ServerResponse.ok().hint(Jackson2CodecSupport.JSON_VIEW_HINT, MyJacksonView::class.java).body(...)
Handler Classes
We can write a handler function as a lambda, as the following example shows:
-
Java
-
Kotlin
HandlerFunction<ServerResponse> helloWorld =
request -> ServerResponse.ok().bodyValue("Hello World");
val helloWorld = HandlerFunction<ServerResponse> { ServerResponse.ok().bodyValue("Hello World") }
That is convenient, but in an application we need multiple functions, and multiple inline
lambda’s can get messy.
Therefore, it is useful to group related handler functions together into a handler class, which
has a similar role as @Controller
in an annotation-based application.
For example, the following class exposes a reactive Person
repository:
-
Java
-
Kotlin
import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.ServerResponse.ok;
public class PersonHandler {
private final PersonRepository repository;
public PersonHandler(PersonRepository repository) {
this.repository = repository;
}
public Mono<ServerResponse> listPeople(ServerRequest request) { (1)
Flux<Person> people = repository.allPeople();
return ok().contentType(APPLICATION_JSON).body(people, Person.class);
}
public Mono<ServerResponse> createPerson(ServerRequest request) { (2)
Mono<Person> person = request.bodyToMono(Person.class);
return ok().build(repository.savePerson(person));
}
public Mono<ServerResponse> getPerson(ServerRequest request) { (3)
int personId = Integer.valueOf(request.pathVariable("id"));
return repository.getPerson(personId)
.flatMap(person -> ok().contentType(APPLICATION_JSON).bodyValue(person))
.switchIfEmpty(ServerResponse.notFound().build());
}
}
1 | listPeople is a handler function that returns all Person objects found in the repository as
JSON. |
2 | createPerson is a handler function that stores a new Person contained in the request body.
Note that PersonRepository.savePerson(Person) returns Mono<Void> : an empty Mono that emits
a completion signal when the person has been read from the request and stored. So we use the
build(Publisher<Void>) method to send a response when that completion signal is received (that is,
when the Person has been saved). |
3 | getPerson is a handler function that returns a single person, identified by the id path
variable. We retrieve that Person from the repository and create a JSON response, if it is
found. If it is not found, we use switchIfEmpty(Mono<T>) to return a 404 Not Found response. |
class PersonHandler(private val repository: PersonRepository) {
suspend fun listPeople(request: ServerRequest): ServerResponse { (1)
val people: Flow<Person> = repository.allPeople()
return ok().contentType(APPLICATION_JSON).bodyAndAwait(people);
}
suspend fun createPerson(request: ServerRequest): ServerResponse { (2)
val person = request.awaitBody<Person>()
repository.savePerson(person)
return ok().buildAndAwait()
}
suspend fun getPerson(request: ServerRequest): ServerResponse { (3)
val personId = request.pathVariable("id").toInt()
return repository.getPerson(personId)?.let { ok().contentType(APPLICATION_JSON).bodyValueAndAwait(it) }
?: ServerResponse.notFound().buildAndAwait()
}
}
1 | listPeople is a handler function that returns all Person objects found in the repository as
JSON. |
2 | createPerson is a handler function that stores a new Person contained in the request body.
Note that PersonRepository.savePerson(Person) is a suspending function with no return type. |
3 | getPerson is a handler function that returns a single person, identified by the id path
variable. We retrieve that Person from the repository and create a JSON response, if it is
found. If it is not found, we return a 404 Not Found response. |
Validation
A functional endpoint can use Spring’s validation facilities to
apply validation to the request body. For example, given a custom Spring
Validator implementation for a Person
:
-
Java
-
Kotlin
public class PersonHandler {
private final Validator validator = new PersonValidator(); (1)
// ...
public Mono<ServerResponse> createPerson(ServerRequest request) {
Mono<Person> person = request.bodyToMono(Person.class).doOnNext(this::validate); (2)
return ok().build(repository.savePerson(person));
}
private void validate(Person person) {
Errors errors = new BeanPropertyBindingResult(person, "person");
validator.validate(person, errors);
if (errors.hasErrors()) {
throw new ServerWebInputException(errors.toString()); (3)
}
}
}
1 | Create Validator instance. |
2 | Apply validation. |
3 | Raise exception for a 400 response. |
class PersonHandler(private val repository: PersonRepository) {
private val validator = PersonValidator() (1)
// ...
suspend fun createPerson(request: ServerRequest): ServerResponse {
val person = request.awaitBody<Person>()
validate(person) (2)
repository.savePerson(person)
return ok().buildAndAwait()
}
private fun validate(person: Person) {
val errors: Errors = BeanPropertyBindingResult(person, "person");
validator.validate(person, errors);
if (errors.hasErrors()) {
throw ServerWebInputException(errors.toString()) (3)
}
}
}
1 | Create Validator instance. |
2 | Apply validation. |
3 | Raise exception for a 400 response. |
Handlers can also use the standard bean validation API (JSR-303) by creating and injecting
a global Validator
instance based on LocalValidatorFactoryBean
.
See Spring Validation.
RouterFunction
Router functions are used to route the requests to the corresponding HandlerFunction
.
Typically, you do not write router functions yourself, but rather use a method on the
RouterFunctions
utility class to create one.
RouterFunctions.route()
(no parameters) provides you with a fluent builder for creating a router
function, whereas RouterFunctions.route(RequestPredicate, HandlerFunction)
offers a direct way
to create a router.
Generally, it is recommended to use the route()
builder, as it provides
convenient short-cuts for typical mapping scenarios without requiring hard-to-discover
static imports.
For instance, the router function builder offers the method GET(String, HandlerFunction)
to create a mapping for GET requests; and POST(String, HandlerFunction)
for POSTs.
Besides HTTP method-based mapping, the route builder offers a way to introduce additional
predicates when mapping to requests.
For each HTTP method there is an overloaded variant that takes a RequestPredicate
as a
parameter, though which additional constraints can be expressed.
Predicates
You can write your own RequestPredicate
, but the RequestPredicates
utility class
offers commonly used implementations, based on the request path, HTTP method, content-type,
and so on.
The following example uses a request predicate to create a constraint based on the Accept
header:
-
Java
-
Kotlin
RouterFunction<ServerResponse> route = RouterFunctions.route()
.GET("/hello-world", accept(MediaType.TEXT_PLAIN),
request -> ServerResponse.ok().bodyValue("Hello World")).build();
val route = coRouter {
GET("/hello-world", accept(TEXT_PLAIN)) {
ServerResponse.ok().bodyValueAndAwait("Hello World")
}
}
You can compose multiple request predicates together by using:
-
RequestPredicate.and(RequestPredicate)
— both must match. -
RequestPredicate.or(RequestPredicate)
— either can match.
Many of the predicates from RequestPredicates
are composed.
For example, RequestPredicates.GET(String)
is composed from RequestPredicates.method(HttpMethod)
and RequestPredicates.path(String)
.
The example shown above also uses two request predicates, as the builder uses
RequestPredicates.GET
internally, and composes that with the accept
predicate.
Routes
Router functions are evaluated in order: if the first route does not match, the second is evaluated, and so on. Therefore, it makes sense to declare more specific routes before general ones. This is also important when registering router functions as Spring beans, as will be described later. Note that this behavior is different from the annotation-based programming model, where the "most specific" controller method is picked automatically.
When using the router function builder, all defined routes are composed into one
RouterFunction
that is returned from build()
.
There are also other ways to compose multiple router functions together:
-
add(RouterFunction)
on theRouterFunctions.route()
builder -
RouterFunction.and(RouterFunction)
-
RouterFunction.andRoute(RequestPredicate, HandlerFunction)
— shortcut forRouterFunction.and()
with nestedRouterFunctions.route()
.
The following example shows the composition of four routes:
-
Java
-
Kotlin
import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.RequestPredicates.*;
PersonRepository repository = ...
PersonHandler handler = new PersonHandler(repository);
RouterFunction<ServerResponse> otherRoute = ...
RouterFunction<ServerResponse> route = route()
.GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson) (1)
.GET("/person", accept(APPLICATION_JSON), handler::listPeople) (2)
.POST("/person", handler::createPerson) (3)
.add(otherRoute) (4)
.build();
1 | GET /person/{id} with an Accept header that matches JSON is routed to
PersonHandler.getPerson |
2 | GET /person with an Accept header that matches JSON is routed to
PersonHandler.listPeople |
3 | POST /person with no additional predicates is mapped to
PersonHandler.createPerson , and |
4 | otherRoute is a router function that is created elsewhere, and added to the route built. |
import org.springframework.http.MediaType.APPLICATION_JSON
val repository: PersonRepository = ...
val handler = PersonHandler(repository);
val otherRoute: RouterFunction<ServerResponse> = coRouter { }
val route = coRouter {
GET("/person/{id}", accept(APPLICATION_JSON), handler::getPerson) (1)
GET("/person", accept(APPLICATION_JSON), handler::listPeople) (2)
POST("/person", handler::createPerson) (3)
}.and(otherRoute) (4)
1 | GET /person/{id} with an Accept header that matches JSON is routed to
PersonHandler.getPerson |
2 | GET /person with an Accept header that matches JSON is routed to
PersonHandler.listPeople |
3 | POST /person with no additional predicates is mapped to
PersonHandler.createPerson , and |
4 | otherRoute is a router function that is created elsewhere, and added to the route built. |
Nested Routes
It is common for a group of router functions to have a shared predicate, for instance a
shared path. In the example above, the shared predicate would be a path predicate that
matches /person
, used by three of the routes. When using annotations, you would remove
this duplication by using a type-level @RequestMapping
annotation that maps to
/person
. In WebFlux.fn, path predicates can be shared through the path
method on the
router function builder. For instance, the last few lines of the example above can be
improved in the following way by using nested routes:
-
Java
-
Kotlin
RouterFunction<ServerResponse> route = route()
.path("/person", builder -> builder (1)
.GET("/{id}", accept(APPLICATION_JSON), handler::getPerson)
.GET(accept(APPLICATION_JSON), handler::listPeople)
.POST(handler::createPerson))
.build();
1 | Note that second parameter of path is a consumer that takes the router builder. |
val route = coRouter { (1)
"/person".nest {
GET("/{id}", accept(APPLICATION_JSON), handler::getPerson)
GET(accept(APPLICATION_JSON), handler::listPeople)
POST(handler::createPerson)
}
}
1 | Create router using Coroutines router DSL; a Reactive alternative is also available via router { } . |
Though path-based nesting is the most common, you can nest on any kind of predicate by using
the nest
method on the builder.
The above still contains some duplication in the form of the shared Accept
-header predicate.
We can further improve by using the nest
method together with accept
:
-
Java
-
Kotlin
RouterFunction<ServerResponse> route = route()
.path("/person", b1 -> b1
.nest(accept(APPLICATION_JSON), b2 -> b2
.GET("/{id}", handler::getPerson)
.GET(handler::listPeople))
.POST(handler::createPerson))
.build();
val route = coRouter {
"/person".nest {
accept(APPLICATION_JSON).nest {
GET("/{id}", handler::getPerson)
GET(handler::listPeople)
POST(handler::createPerson)
}
}
}
Serving Resources
WebFlux.fn provides built-in support for serving resources.
In addition to the capabilities described below, it is possible to implement even more flexible resource handling thanks to
RouterFunctions#resource(java.util.function.Function) .
|
Redirecting to a resource
It is possible to redirect requests matching a specified predicate to a resource. This can be useful, for example, for handling redirects in Single Page Applications.
-
Java
-
Kotlin
ClassPathResource index = new ClassPathResource("static/index.html");
List<String> extensions = Arrays.asList("js", "css", "ico", "png", "jpg", "gif");
RequestPredicate spaPredicate = path("/api/**").or(path("/error")).or(pathExtension(extensions::contains)).negate();
RouterFunction<ServerResponse> redirectToIndex = route()
.resource(spaPredicate, index)
.build();
val redirectToIndex = router {
val index = ClassPathResource("static/index.html")
val extensions = listOf("js", "css", "ico", "png", "jpg", "gif")
val spaPredicate = !(path("/api/**") or path("/error") or
pathExtension(extensions::contains))
resource(spaPredicate, index)
}
Serving resources from a root location
It is also possible to route requests that match a given pattern to resources relative to a given root location.
-
Java
-
Kotlin
Resource location = new FileSystemResource("public-resources/");
RouterFunction<ServerResponse> resources = RouterFunctions.resources("/resources/**", location);
val location = FileSystemResource("public-resources/")
val resources = router { resources("/resources/**", location) }
Running a Server
How do you run a router function in an HTTP server? A simple option is to convert a router
function to an HttpHandler
by using one of the following:
-
RouterFunctions.toHttpHandler(RouterFunction)
-
RouterFunctions.toHttpHandler(RouterFunction, HandlerStrategies)
You can then use the returned HttpHandler
with a number of server adapters by following
HttpHandler for server-specific instructions.
A more typical option, also used by Spring Boot, is to run with a
DispatcherHandler
-based setup through the
WebFlux Config, which uses Spring configuration to declare the
components required to process requests. The WebFlux Java configuration declares the following
infrastructure components to support functional endpoints:
-
RouterFunctionMapping
: Detects one or moreRouterFunction<?>
beans in the Spring configuration, orders them, combines them throughRouterFunction.andOther
, and routes requests to the resulting composedRouterFunction
. -
HandlerFunctionAdapter
: Simple adapter that letsDispatcherHandler
invoke aHandlerFunction
that was mapped to a request. -
ServerResponseResultHandler
: Handles the result from the invocation of aHandlerFunction
by invoking thewriteTo
method of theServerResponse
.
The preceding components let functional endpoints fit within the DispatcherHandler
request
processing lifecycle and also (potentially) run side by side with annotated controllers, if
any are declared. It is also how functional endpoints are enabled by the Spring Boot WebFlux
starter.
The following example shows a WebFlux Java configuration (see DispatcherHandler for how to run it):
-
Java
-
Kotlin
@Configuration
@EnableWebFlux
public class WebConfig implements WebFluxConfigurer {
@Bean
public RouterFunction<?> routerFunctionA() {
// ...
}
@Bean
public RouterFunction<?> routerFunctionB() {
// ...
}
// ...
@Override
public void configureHttpMessageCodecs(ServerCodecConfigurer configurer) {
// configure message conversion...
}
@Override
public void addCorsMappings(CorsRegistry registry) {
// configure CORS...
}
@Override
public void configureViewResolvers(ViewResolverRegistry registry) {
// configure view resolution for HTML rendering...
}
}
@Configuration
@EnableWebFlux
class WebConfig : WebFluxConfigurer {
@Bean
fun routerFunctionA(): RouterFunction<*> {
// ...
}
@Bean
fun routerFunctionB(): RouterFunction<*> {
// ...
}
// ...
override fun configureHttpMessageCodecs(configurer: ServerCodecConfigurer) {
// configure message conversion...
}
override fun addCorsMappings(registry: CorsRegistry) {
// configure CORS...
}
override fun configureViewResolvers(registry: ViewResolverRegistry) {
// configure view resolution for HTML rendering...
}
}
Filtering Handler Functions
You can filter handler functions by using the before
, after
, or filter
methods on the routing
function builder.
With annotations, you can achieve similar functionality by using @ControllerAdvice
, a ServletFilter
, or both.
The filter will apply to all routes that are built by the builder.
This means that filters defined in nested routes do not apply to "top-level" routes.
For instance, consider the following example:
-
Java
-
Kotlin
RouterFunction<ServerResponse> route = route()
.path("/person", b1 -> b1
.nest(accept(APPLICATION_JSON), b2 -> b2
.GET("/{id}", handler::getPerson)
.GET(handler::listPeople)
.before(request -> ServerRequest.from(request) (1)
.header("X-RequestHeader", "Value")
.build()))
.POST(handler::createPerson))
.after((request, response) -> logResponse(response)) (2)
.build();
1 | The before filter that adds a custom request header is only applied to the two GET routes. |
2 | The after filter that logs the response is applied to all routes, including the nested ones. |
val route = router {
"/person".nest {
GET("/{id}", handler::getPerson)
GET("", handler::listPeople)
before { (1)
ServerRequest.from(it)
.header("X-RequestHeader", "Value").build()
}
POST(handler::createPerson)
after { _, response -> (2)
logResponse(response)
}
}
}
1 | The before filter that adds a custom request header is only applied to the two GET routes. |
2 | The after filter that logs the response is applied to all routes, including the nested ones. |
The filter
method on the router builder takes a HandlerFilterFunction
: a
function that takes a ServerRequest
and HandlerFunction
and returns a ServerResponse
.
The handler function parameter represents the next element in the chain.
This is typically the handler that is routed to, but it can also be another
filter if multiple are applied.
Now we can add a simple security filter to our route, assuming that we have a SecurityManager
that
can determine whether a particular path is allowed.
The following example shows how to do so:
-
Java
-
Kotlin
SecurityManager securityManager = ...
RouterFunction<ServerResponse> route = route()
.path("/person", b1 -> b1
.nest(accept(APPLICATION_JSON), b2 -> b2
.GET("/{id}", handler::getPerson)
.GET(handler::listPeople))
.POST(handler::createPerson))
.filter((request, next) -> {
if (securityManager.allowAccessTo(request.path())) {
return next.handle(request);
}
else {
return ServerResponse.status(UNAUTHORIZED).build();
}
})
.build();
val securityManager: SecurityManager = ...
val route = router {
("/person" and accept(APPLICATION_JSON)).nest {
GET("/{id}", handler::getPerson)
GET("", handler::listPeople)
POST(handler::createPerson)
filter { request, next ->
if (securityManager.allowAccessTo(request.path())) {
next(request)
}
else {
status(UNAUTHORIZED).build();
}
}
}
}
The preceding example demonstrates that invoking the next.handle(ServerRequest)
is optional.
We only let the handler function be run when access is allowed.
Besides using the filter
method on the router function builder, it is possible to apply a
filter to an existing router function via RouterFunction.filter(HandlerFilterFunction)
.
CORS support for functional endpoints is provided through a dedicated
CorsWebFilter .
|