Authorize ServerHttpRequest

Spring Security provides support for authorizing the incoming HTTP requests. By default, Spring Security’s authorization will require all requests to be authenticated. The explicit configuration looks like:

All Requests Require Authenticated User
  • Java

  • Kotlin

@Bean
SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
    http
        .authorizeExchange(exchanges -> exchanges
            .anyExchange().authenticated()
        )
        .httpBasic(withDefaults())
        .formLogin(withDefaults());
    return http.build();
}
@Bean
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
    return http {
        authorizeExchange {
            authorize(anyExchange, authenticated)
        }
        formLogin { }
        httpBasic { }
    }
}

We can configure Spring Security to have different rules by adding more rules in order of precedence.

Multiple Authorize Requests Rules
  • Java

  • Kotlin

import static org.springframework.security.authorization.AuthorityReactiveAuthorizationManager.hasRole;
// ...
@Bean
SecurityWebFilterChain springWebFilterChain(ServerHttpSecurity http) {
	http
		// ...
		.authorizeExchange((authorize) -> authorize                          (1)
			.pathMatchers("/resources/**", "/signup", "/about").permitAll()  (2)
			.pathMatchers("/admin/**").hasRole("ADMIN")                      (3)
			.pathMatchers("/db/**").access((authentication, context) ->      (4)
				hasRole("ADMIN").check(authentication, context)
					.filter(decision -> !decision.isGranted())
					.switchIfEmpty(hasRole("DBA").check(authentication, context))
			)
			.anyExchange().denyAll()                                         (5)
		);
	return http.build();
}
@Bean
fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
    return http {
        authorizeExchange {                                                           (1)
            authorize(pathMatchers("/resources/**", "/signup", "/about"), permitAll)  (2)
            authorize("/admin/**", hasRole("ADMIN"))                                  (3)
            authorize("/db/**", { authentication, context ->                          (4)
                hasRole("ADMIN").check(authentication, context)
                    .filter({ decision -> !decision.isGranted() })
                    .switchIfEmpty(hasRole("DBA").check(authentication, context))
            })
            authorize(anyExchange, denyAll)                                           (5)
        }
        // ...
    }
}
1 There are multiple authorization rules specified. Each rule is considered in the order they were declared.
2 We specified multiple URL patterns that any user can access. Specifically, any user can access a request if the URL starts with "/resources/", equals "/signup", or equals "/about".
3 Any URL that starts with "/admin/" will be restricted to users who have the authority "ROLE_ADMIN". You will notice that since we are invoking the hasRole method we do not need to specify the "ROLE_" prefix.
4 Any URL that starts with "/db/" requires the user to have both "ROLE_ADMIN" and "ROLE_DBA". This demonstrates the flexibility of providing a custom ReactiveAuthorizationManager allowing us to implement arbitrary authorization logic. For simplicity, the sample uses a lambda and delegate to the existing AuthorityReactiveAuthorizationManager.hasRole implementation. However, in a real world situation applications would likely implement the logic in a proper class implementing ReactiveAuthorizationManager.
5 Any URL that has not already been matched on is denied access. This is a good strategy if you do not want to accidentally forget to update your authorization rules.