ZhiPu AI Chat
Spring AI supports the various AI language models from ZhiPu AI. You can interact with ZhiPu AI language models and create a multilingual conversational assistant based on ZhiPuAI models.
Prerequisites
You will need to create an API with ZhiPuAI to access ZhiPu AI language models.
Create an account at ZhiPu AI registration page and generate the token on the API Keys page.
The Spring AI project defines a configuration property named spring.ai.zhipuai.api-key
that you should set to the value of the API Key
obtained from API Keys page.
Exporting an environment variable is one way to set that configuration property:
export SPRING_AI_ZHIPU_AI_API_KEY=<INSERT KEY HERE>
Add Repositories and BOM
Spring AI artifacts are published in Spring Milestone and Snapshot repositories. Refer to the Repositories section to add these repositories to your build system.
To help with dependency management, Spring AI provides a BOM (bill of materials) to ensure that a consistent version of Spring AI is used throughout the entire project. Refer to the Dependency Management section to add the Spring AI BOM to your build system.
Auto-configuration
Spring AI provides Spring Boot auto-configuration for the ZhiPuAI Chat Client.
To enable it add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-zhipuai-spring-boot-starter</artifactId>
</dependency>
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-zhipuai-spring-boot-starter'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Chat Properties
Retry Properties
The prefix spring.ai.retry
is used as the property prefix that lets you configure the retry mechanism for the ZhiPu AI chat model.
Property | Description | Default |
---|---|---|
spring.ai.retry.max-attempts |
Maximum number of retry attempts. |
10 |
spring.ai.retry.backoff.initial-interval |
Initial sleep duration for the exponential backoff policy. |
2 sec. |
spring.ai.retry.backoff.multiplier |
Backoff interval multiplier. |
5 |
spring.ai.retry.backoff.max-interval |
Maximum backoff duration. |
3 min. |
spring.ai.retry.on-client-errors |
If false, throw a NonTransientAiException, and do not attempt retry for |
false |
spring.ai.retry.exclude-on-http-codes |
List of HTTP status codes that should not trigger a retry (e.g. to throw NonTransientAiException). |
empty |
spring.ai.retry.on-http-codes |
List of HTTP status codes that should trigger a retry (e.g. to throw TransientAiException). |
empty |
Connection Properties
The prefix spring.ai.zhiPu
is used as the property prefix that lets you connect to ZhiPuAI.
Property | Description | Default |
---|---|---|
spring.ai.zhipuai.base-url |
The URL to connect to |
|
spring.ai.zhipuai.api-key |
The API Key |
- |
Configuration Properties
The prefix spring.ai.zhipuai.chat
is the property prefix that lets you configure the chat model implementation for ZhiPuAI.
Property | Description | Default |
---|---|---|
spring.ai.zhipuai.chat.enabled |
Enable ZhiPuAI chat model. |
true |
spring.ai.zhipuai.chat.base-url |
Optional overrides the spring.ai.zhipuai.base-url to provide chat specific url |
|
spring.ai.zhipuai.chat.api-key |
Optional overrides the spring.ai.zhipuai.api-key to provide chat specific api-key |
- |
spring.ai.zhipuai.chat.options.model |
This is the ZhiPuAI Chat model to use |
|
spring.ai.zhipuai.chat.options.maxTokens |
The maximum number of tokens to generate in the chat completion. The total length of input tokens and generated tokens is limited by the model’s context length. |
- |
spring.ai.zhipuai.chat.options.temperature |
What sampling temperature to use, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or top_p but not both. |
0.7 |
spring.ai.zhipuai.chat.options.topP |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both.. |
1.0 |
spring.ai.zhipuai.chat.options.stop |
The model will stop generating characters specified by stop, and currently only supports a single stop word in the format of ["stop_word1"] |
- |
spring.ai.zhipuai.chat.options.user |
A unique identifier representing your end-user, which can help ZhiPuAI to monitor and detect abuse. |
- |
spring.ai.zhipuai.chat.options.requestId |
The parameter is passed by the client and must ensure uniqueness. It is used to distinguish the unique identifier for each request. If the client does not provide it, the platform will generate it by default. |
- |
spring.ai.zhipuai.chat.options.doSample |
When do_sample is set to true, the sampling strategy is enabled. If do_sample is false, the sampling strategy parameters temperature and top_p will not take effect. |
true |
spring.ai.zhipuai.chat.options.proxy-tool-calls |
If true, the Spring AI will not handle the function calls internally, but will proxy them to the client. Then is the client’s responsibility to handle the function calls, dispatch them to the appropriate function, and return the results. If false (the default), the Spring AI will handle the function calls internally. Applicable only for chat models with function calling support |
false |
You can override the common spring.ai.zhipuai.base-url and spring.ai.zhipuai.api-key for the ChatModel implementations.
The spring.ai.zhipuai.chat.base-url and spring.ai.zhipuai.chat.api-key properties if set take precedence over the common properties.
This is useful if you want to use different ZhiPuAI accounts for different models and different model endpoints.
|
All properties prefixed with spring.ai.zhipuai.chat.options can be overridden at runtime by adding a request specific Runtime Options to the Prompt call.
|
Runtime Options
The ZhiPuAiChatOptions.java provides model configurations, such as the model to use, the temperature, the frequency penalty, etc.
On start-up, the default options can be configured with the ZhiPuAiChatModel(api, options)
constructor or the spring.ai.zhipuai.chat.options.*
properties.
At run-time you can override the default options by adding new, request specific, options to the Prompt
call.
For example to override the default model and temperature for a specific request:
ChatResponse response = chatModel.call(
new Prompt(
"Generate the names of 5 famous pirates.",
ZhiPuAiChatOptions.builder()
.withModel(ZhiPuAiApi.ChatModel.GLM_3_Turbo.getValue())
.withTemperature(0.5)
.build()
));
In addition to the model specific ZhiPuAiChatOptions you can use a portable ChatOptions instance, created with the ChatOptionsBuilder#builder(). |
Sample Controller
Create a new Spring Boot project and add the spring-ai-zhipuai-spring-boot-starter
to your pom (or gradle) dependencies.
Add a application.properties
file, under the src/main/resources
directory, to enable and configure the ZhiPuAi chat model:
spring.ai.zhipuai.api-key=YOUR_API_KEY
spring.ai.zhipuai.chat.options.model=glm-4-air
spring.ai.zhipuai.chat.options.temperature=0.7
replace the api-key with your ZhiPuAI credentials.
|
This will create a ZhiPuAiChatModel
implementation that you can inject into your class.
Here is an example of a simple @Controller
class that uses the chat model for text generations.
@RestController
public class ChatController {
private final ZhiPuAiChatModel chatModel;
@Autowired
public ChatController(ZhiPuAiChatModel chatModel) {
this.chatModel = chatModel;
}
@GetMapping("/ai/generate")
public Map generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
return Map.of("generation", this.chatModel.call(message));
}
@GetMapping("/ai/generateStream")
public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
var prompt = new Prompt(new UserMessage(message));
return this.chatModel.stream(prompt);
}
}
Manual Configuration
The ZhiPuAiChatModel implements the ChatModel
and StreamingChatModel
and uses the Low-level ZhiPuAiApi Client to connect to the ZhiPuAI service.
Add the spring-ai-zhipuai
dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-zhipuai</artifactId>
</dependency>
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-zhipuai'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Next, create a ZhiPuAiChatModel
and use it for text generations:
var zhiPuAiApi = new ZhiPuAiApi(System.getenv("ZHIPU_AI_API_KEY"));
var chatModel = new ZhiPuAiChatModel(this.zhiPuAiApi, ZhiPuAiChatOptions.builder()
.withModel(ZhiPuAiApi.ChatModel.GLM_3_Turbo.getValue())
.withTemperature(0.4)
.withMaxTokens(200)
.build());
ChatResponse response = this.chatModel.call(
new Prompt("Generate the names of 5 famous pirates."));
// Or with streaming responses
Flux<ChatResponse> streamResponse = this.chatModel.stream(
new Prompt("Generate the names of 5 famous pirates."));
The ZhiPuAiChatOptions
provides the configuration information for the chat requests.
The ZhiPuAiChatOptions.Builder
is fluent options builder.
Low-level ZhiPuAiApi Client
The ZhiPuAiApi provides is lightweight Java client for ZhiPu AI API.
Here is a simple snippet how to use the api programmatically:
ZhiPuAiApi zhiPuAiApi =
new ZhiPuAiApi(System.getenv("ZHIPU_AI_API_KEY"));
ChatCompletionMessage chatCompletionMessage =
new ChatCompletionMessage("Hello world", Role.USER);
// Sync request
ResponseEntity<ChatCompletion> response = this.zhiPuAiApi.chatCompletionEntity(
new ChatCompletionRequest(List.of(this.chatCompletionMessage), ZhiPuAiApi.ChatModel.GLM_3_Turbo.getValue(), 0.7, false));
// Streaming request
Flux<ChatCompletionChunk> streamResponse = this.zhiPuAiApi.chatCompletionStream(
new ChatCompletionRequest(List.of(this.chatCompletionMessage), ZhiPuAiApi.ChatModel.GLM_3_Turbo.getValue(), 0.7, true));
Follow the ZhiPuAiApi.java's JavaDoc for further information.
ZhiPuAiApi Samples
-
The ZhiPuAiApiIT.java test provides some general examples how to use the lightweight library.