Redis
This section walks you through setting up RedisVectorStore
to store document embeddings and perform similarity searches.
Redis is an open source (BSD licensed), in-memory data structure store used as a database, cache, message broker, and streaming engine. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.
Redis Search and Query extends the core features of Redis OSS and allows you to use Redis as a vector database:
-
Store vectors and the associated metadata within hashes or JSON documents
-
Retrieve vectors
-
Perform vector searches
Prerequisites
-
A Redis Stack instance
-
Redis Cloud (recommended)
-
Docker image redis/redis-stack:latest
-
-
EmbeddingModel
instance to compute the document embeddings. Several options are available:-
If required, an API key for the EmbeddingModel to generate the embeddings stored by the
RedisVectorStore
.
-
Auto-configuration
Spring AI provides Spring Boot auto-configuration for the Redis Vector Store.
To enable it, add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-redis-store-spring-boot-starter</artifactId>
</dependency>
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-redis-store-spring-boot-starter'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Refer to the Repositories section to add Milestone and/or Snapshot Repositories to your build file. |
The vector store implementation can initialize the requisite schema for you, but you must opt-in by specifying the initializeSchema
boolean in the appropriate constructor or by setting …initialize-schema=true
in the application.properties
file.
this is a breaking change! In earlier versions of Spring AI, this schema initialization happened by default. |
Please have a look at the list of configuration parameters for the vector store to learn about the default values and configuration options.
Additionally, you will need a configured EmbeddingModel
bean. Refer to the EmbeddingModel section for more information.
Now you can auto-wire the RedisVectorStore
as a vector store in your application.
@Autowired VectorStore vectorStore;
// ...
List <Document> documents = List.of(
new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", Map.of("meta1", "meta1")),
new Document("The World is Big and Salvation Lurks Around the Corner"),
new Document("You walk forward facing the past and you turn back toward the future.", Map.of("meta2", "meta2")));
// Add the documents to Redis
vectorStore.add(documents);
// Retrieve documents similar to a query
List<Document> results = this.vectorStore.similaritySearch(SearchRequest.builder().query("Spring").topK(5).build());
Configuration Properties
To connect to Redis and use the RedisVectorStore
, you need to provide access details for your instance.
A simple configuration can be provided via Spring Boot’s application.yml
,
spring:
data:
redis:
uri: <redis instance uri>
ai:
vectorstore:
redis:
initialize-schema: true
index-name: custom-index
prefix: custom-prefix
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
Properties starting with spring.ai.vectorstore.redis.*
are used to configure the RedisVectorStore
:
Property | Description | Default Value |
---|---|---|
|
Whether to initialize the required schema |
|
|
The name of the index to store the vectors |
|
|
The prefix for Redis keys |
|
|
Strategy for batching documents when calculating embeddings. Options are |
|
Metadata Filtering
You can leverage the generic, portable metadata filters with Redis as well.
For example, you can use either the text expression language:
vectorStore.similaritySearch(SearchRequest.builder()
.query("The World")
.topK(TOP_K)
.similarityThreshold(SIMILARITY_THRESHOLD)
.filterExpression("country in ['UK', 'NL'] && year >= 2020").build());
or programmatically using the Filter.Expression
DSL:
FilterExpressionBuilder b = new FilterExpressionBuilder();
vectorStore.similaritySearch(SearchRequest.builder()
.query("The World")
.topK(TOP_K)
.similarityThreshold(SIMILARITY_THRESHOLD)
.filterExpression(b.and(
b.in("country", "UK", "NL"),
b.gte("year", 2020)).build()).build());
Those (portable) filter expressions get automatically converted into Redis search queries. |
For example, this portable filter expression:
country in ['UK', 'NL'] && year >= 2020
is converted into the proprietary Redis filter format:
@country:{UK | NL} @year:[2020 inf]
Manual Configuration
Instead of using the Spring Boot auto-configuration, you can manually configure the Redis vector store. For this you need to add the spring-ai-redis-store
to your project:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-redis-store</artifactId>
</dependency>
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-redis-store'
}
Create a JedisPooled
bean:
@Bean
public JedisPooled jedisPooled() {
return new JedisPooled("<host>", 6379);
}
Then create the RedisVectorStore
bean using the builder pattern:
@Bean
public VectorStore vectorStore(JedisPooled jedisPooled, EmbeddingModel embeddingModel) {
return RedisVectorStore.builder(jedisPooled, embeddingModel)
.indexName("custom-index") // Optional: defaults to "spring-ai-index"
.prefix("custom-prefix") // Optional: defaults to "embedding:"
.metadataFields( // Optional: define metadata fields for filtering
MetadataField.tag("country"),
MetadataField.numeric("year"))
.initializeSchema(true) // Optional: defaults to false
.batchingStrategy(new TokenCountBatchingStrategy()) // Optional: defaults to TokenCountBatchingStrategy
.build();
}
// This can be any EmbeddingModel implementation
@Bean
public EmbeddingModel embeddingModel() {
return new OpenAiEmbeddingModel(new OpenAiApi(System.getenv("OPENAI_API_KEY")));
}
You must list explicitly all metadata field names and types ( |