This version is still in development and is not considered stable yet. For the latest snapshot version, please use Spring AI 1.0.0-SNAPSHOT! |
Docker Model Runner Chat
Docker Model Runner is an AI Inference Engine offering a wide range of models from various providers.
Spring AI integrates with the Docker Model Runner by reusing the existing OpenAI backed ChatClient
.
To do this, set the base URL to localhost:12434/engines
and select one of the provided LLM models.
Check the DockerModelRunnerWithOpenAiChatModelIT.java tests for examples of how to use the Docker Model Runner with Spring AI.
Prerequisite
-
Download Docker Desktop for Mac 4.40.0.
Choose one of the following options to enable the Model Runner:
Option 1:
-
Enable Model Runner
docker desktop enable model-runner --tcp 12434
. -
Set the base-url to
localhost:12434/engines
Option 2:
-
Enable Model Runner
docker desktop enable model-runner
. -
Use Testcontainers and set the base-url as follows:
@Container
private static final SocatContainer socat = new SocatContainer().withTarget(80, "model-runner.docker.internal");
@Bean
public OpenAiApi chatCompletionApi() {
var baseUrl = "http://%s:%d/engines".formatted(socat.getHost(), socat.getMappedPort(80));
return OpenAiApi.builder().baseUrl(baseUrl).apiKey("test").build();
}
You can learn more about the Docker Model Runner by reading the Run LLMs Locally with Docker blog post.
Auto-configuration
The artifact IDs for Spring AI starter modules have been renamed since version 1.0.0.M7. Dependency names should now follow updated naming patterns for models, vector stores, and MCP starters. Please refer to the upgrade notes for more information. |
Spring AI provides Spring Boot auto-configuration for the OpenAI Chat Client.
To enable it, add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-openai</artifactId>
</dependency>
or add the following to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-starter-model-openai'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Chat Properties
Retry Properties
The prefix spring.ai.retry
is used as the property prefix that lets you configure the retry mechanism for the OpenAI chat model.
Property | Description | Default |
---|---|---|
spring.ai.retry.max-attempts |
Maximum number of retry attempts. |
10 |
spring.ai.retry.backoff.initial-interval |
Initial sleep duration for the exponential backoff policy. |
2 sec. |
spring.ai.retry.backoff.multiplier |
Backoff interval multiplier. |
5 |
spring.ai.retry.backoff.max-interval |
Maximum backoff duration. |
3 min. |
spring.ai.retry.on-client-errors |
If false, throw a NonTransientAiException, and do not attempt retry for |
false |
spring.ai.retry.exclude-on-http-codes |
List of HTTP status codes that should not trigger a retry (e.g. to throw NonTransientAiException). |
empty |
spring.ai.retry.on-http-codes |
List of HTTP status codes that should trigger a retry (e.g. to throw TransientAiException). |
empty |
Connection Properties
The prefix spring.ai.openai
is used as the property prefix that lets you connect to OpenAI.
Property | Description | Default |
---|---|---|
spring.ai.openai.base-url |
The URL to connect to. Must be set to |
- |
spring.ai.openai.api-key |
Any string |
- |
Configuration Properties
Enabling and disabling chat auto-configurations is now done via top level properties with the prefix To enable, To disable, This change allows for the configuration of multiple models in your application. |
The prefix spring.ai.openai.chat
is the property prefix that lets you configure the chat model implementation for OpenAI.
Property | Description | Default |
---|---|---|
spring.ai.openai.chat.enabled (Removed and no longer valid) |
Enable OpenAI chat model. |
true |
spring.ai.model.chat |
Enable OpenAI chat model. |
openai |
spring.ai.openai.chat.base-url |
Optional overrides the |
- |
spring.ai.openai.chat.api-key |
Optional overrides the spring.ai.openai.api-key to provide chat specific api-key |
- |
spring.ai.openai.chat.options.model |
The LLM model to use |
- |
spring.ai.openai.chat.options.temperature |
The sampling temperature that controls the apparent creativity of generated completions. Higher values will make output more random while lower values will make results more focused and deterministic. It is not recommended to modify temperature and top_p for the same completions request as the interaction of these two settings is difficult to predict. |
0.8 |
spring.ai.openai.chat.options.frequencyPenalty |
Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim. |
0.0f |
spring.ai.openai.chat.options.maxTokens |
The maximum number of tokens to generate in the chat completion. The total length of input tokens and generated tokens is limited by the model’s context length. |
- |
spring.ai.openai.chat.options.n |
How many chat completion choices to generate for each input message. Note that you will be charged based on the number of generated tokens across all of the choices. Keep n as 1 to minimize costs. |
1 |
spring.ai.openai.chat.options.presencePenalty |
Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model’s likelihood to talk about new topics. |
- |
spring.ai.openai.chat.options.responseFormat |
An object specifying the format that the model must output. Setting to |
- |
spring.ai.openai.chat.options.seed |
This feature is in Beta. If specified, our system will make a best effort to sample deterministically, such that repeated requests with the same seed and parameters should return the same result. |
- |
spring.ai.openai.chat.options.stop |
Up to 4 sequences where the API will stop generating further tokens. |
- |
spring.ai.openai.chat.options.topP |
An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. We generally recommend altering this or temperature but not both. |
- |
spring.ai.openai.chat.options.tools |
A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of functions the model may generate JSON inputs for. |
- |
spring.ai.openai.chat.options.toolChoice |
Controls which (if any) function is called by the model. none means the model will not call a function and instead generates a message. auto means the model can pick between generating a message or calling a function. Specifying a particular function via {"type: "function", "function": {"name": "my_function"}} forces the model to call that function. none is the default when no functions are present. auto is the default if functions are present. |
- |
spring.ai.openai.chat.options.user |
A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. |
- |
spring.ai.openai.chat.options.functions |
List of functions, identified by their names, to enable for function calling in a single prompt requests. Functions with those names must exist in the functionCallbacks registry. |
- |
spring.ai.openai.chat.options.stream-usage |
(For streaming only) Set to add an additional chunk with token usage statistics for the entire request. The |
false |
spring.ai.openai.chat.options.proxy-tool-calls |
If true, the Spring AI will not handle the function calls internally, but will proxy them to the client. Then is the client’s responsibility to handle the function calls, dispatch them to the appropriate function, and return the results. If false (the default), the Spring AI will handle the function calls internally. Applicable only for chat models with function calling support |
false |
All properties prefixed with spring.ai.openai.chat.options can be overridden at runtime by adding a request specific Runtime Options to the Prompt call.
|
Runtime Options
The OpenAiChatOptions.java provides model configurations, such as the model to use, the temperature, the frequency penalty, etc.
On start-up, the default options can be configured with the OpenAiChatModel(api, options)
constructor or the spring.ai.openai.chat.options.*
properties.
At run-time you can override the default options by adding new, request specific, options to the Prompt
call.
For example, to override the default model and temperature for a specific request:
ChatResponse response = chatModel.call(
new Prompt(
"Generate the names of 5 famous pirates.",
OpenAiChatOptions.builder()
.model("ai/gemma3:4B-F16")
.build()
));
In addition to the model specific OpenAiChatOptions you can use a portable ChatOptions instance, created with the ChatOptions#builder(). |
Function Calling
Docker Model Runner supports Tool/Function calling when selecting a model that supports it.
You can register custom Java functions with your ChatModel and have the provided model intelligently choose to output a JSON object containing arguments to call one or many of the registered functions. This is a powerful technique for connecting the LLM capabilities with external tools and APIs.
Tool Example
Here’s a simple example of how to use Docker Model Runner function calling with Spring AI:
spring.ai.openai.api-key=test
spring.ai.openai.base-url=http://localhost:12434/engines
spring.ai.openai.chat.options.model=ai/gemma3:4B-F16
@SpringBootApplication
public class DockerModelRunnerLlmApplication {
public static void main(String[] args) {
SpringApplication.run(DockerModelRunnerLlmApplication.class, args);
}
@Bean
CommandLineRunner runner(ChatClient.Builder chatClientBuilder) {
return args -> {
var chatClient = chatClientBuilder.build();
var response = chatClient.prompt()
.user("What is the weather in Amsterdam and Paris?")
.functions("weatherFunction") // reference by bean name.
.call()
.content();
System.out.println(response);
};
}
@Bean
@Description("Get the weather in location")
public Function<WeatherRequest, WeatherResponse> weatherFunction() {
return new MockWeatherService();
}
public static class MockWeatherService implements Function<WeatherRequest, WeatherResponse> {
public record WeatherRequest(String location, String unit) {}
public record WeatherResponse(double temp, String unit) {}
@Override
public WeatherResponse apply(WeatherRequest request) {
double temperature = request.location().contains("Amsterdam") ? 20 : 25;
return new WeatherResponse(temperature, request.unit);
}
}
}
In this example, when the model needs weather information, it will automatically call the weatherFunction
bean, which can then fetch real-time weather data.
The expected response is: "The weather in Amsterdam is currently 20 degrees Celsius, and the weather in Paris is currently 25 degrees Celsius."
Read more about OpenAI Function Calling.
Sample Controller
Create a new Spring Boot project and add the spring-ai-starter-model-openai
to your pom (or gradle) dependencies.
Add a application.properties
file, under the src/main/resources
directory, to enable and configure the OpenAi chat model:
spring.ai.openai.api-key=test
spring.ai.openai.base-url=http://localhost:12434/engines
spring.ai.openai.chat.options.model=ai/gemma3:4B-F16
# Docker Model Runner doesn't support embeddings, so we need to disable them.
spring.ai.openai.embedding.enabled=false
Here is an example of a simple @Controller
class that uses the chat model for text generation.
@RestController
public class ChatController {
private final OpenAiChatModel chatModel;
@Autowired
public ChatController(OpenAiChatModel chatModel) {
this.chatModel = chatModel;
}
@GetMapping("/ai/generate")
public Map generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
return Map.of("generation", this.chatModel.call(message));
}
@GetMapping("/ai/generateStream")
public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
Prompt prompt = new Prompt(new UserMessage(message));
return this.chatModel.stream(prompt);
}
}