This version is still in development and is not considered stable yet. For the latest snapshot version, please use Spring AI 1.0.0-SNAPSHOT! |
Azure OpenAI Transcriptions
Spring AI supports Azure Whisper model.
Prerequisites
Obtain your Azure OpenAI endpoint
and api-key
from the Azure OpenAI Service section on the Azure Portal.
Spring AI defines a configuration property named spring.ai.azure.openai.api-key
that you should set to the value of the API Key
obtained from Azure.
There is also a configuration property named spring.ai.azure.openai.endpoint
that you should set to the endpoint URL obtained when provisioning your model in Azure.
Exporting an environment variable is one way to set that configuration property:
Auto-configuration
Spring AI provides Spring Boot auto-configuration for the Azure OpenAI Transcription Generation Client.
To enable it, add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-azure-openai-spring-boot-starter</artifactId>
</dependency>
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-azure-openai-spring-boot-starter'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Transcription Properties
The prefix spring.ai.openai.audio.transcription
is used as the property prefix that lets you configure the retry mechanism for the OpenAI image model.
Property | Description | Default |
---|---|---|
spring.ai.azure.openai.audio.transcription.enabled |
Enable Azure OpenAI transcription model. |
true |
spring.ai.azure.openai.audio.transcription.options.model |
ID of the model to use. Only whisper is currently available. |
whisper |
spring.ai.azure.openai.audio.transcription.options.deployment-name |
The deployment name under which the model is deployed. |
|
spring.ai.azure.openai.audio.transcription.options.response-format |
The format of the transcript output, in one of these options: json, text, srt, verbose_json, or vtt. |
json |
spring.ai.azure.openai.audio.transcription.options.prompt |
An optional text to guide the model’s style or continue a previous audio segment. The prompt should match the audio language. |
|
spring.ai.azure.openai.audio.transcription.options.language |
The language of the input audio. Supplying the input language in ISO-639-1 format will improve accuracy and latency. |
|
spring.ai.azure.openai.audio.transcription.options.temperature |
The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit. |
0 |
spring.ai.azure.openai.audio.transcription.options.timestamp-granularities |
The timestamp granularities to populate for this transcription. response_format must be set verbose_json to use timestamp granularities. Either or both of these options are supported: word, or segment. Note: There is no additional latency for segment timestamps, but generating word timestamps incurs additional latency. |
segment |
Runtime Options
The AzureOpenAiAudioTranscriptionOptions
class provides the options to use when making a transcription.
On start-up, the options specified by spring.ai.azure.openai.audio.transcription
are used, but you can override these at runtime.
For example:
AzureOpenAiAudioTranscriptionOptions.TranscriptResponseFormat responseFormat = AzureOpenAiAudioTranscriptionOptions.TranscriptResponseFormat.VTT;
AzureOpenAiAudioTranscriptionOptions transcriptionOptions = AzureOpenAiAudioTranscriptionOptions.builder()
.withLanguage("en")
.withPrompt("Ask not this, but ask that")
.withTemperature(0f)
.withResponseFormat(responseFormat)
.build();
AudioTranscriptionPrompt transcriptionRequest = new AudioTranscriptionPrompt(audioFile, transcriptionOptions);
AudioTranscriptionResponse response = azureOpenAiTranscriptionModel.call(transcriptionRequest);
Manual Configuration
Add the spring-ai-openai
dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-azure-openai</artifactId>
</dependency>
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-azure-openai'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Next, create a AzureOpenAiAudioTranscriptionModel
var openAIClient = new OpenAIClientBuilder()
.credential(new AzureKeyCredential(System.getenv("AZURE_OPENAI_API_KEY")))
.endpoint(System.getenv("AZURE_OPENAI_ENDPOINT"))
.buildClient();
var azureOpenAiAudioTranscriptionModel = new AzureOpenAiAudioTranscriptionModel(openAIClient, null);
var transcriptionOptions = AzureOpenAiAudioTranscriptionOptions.builder()
.withResponseFormat(TranscriptResponseFormat.TEXT)
.withTemperature(0f)
.build();
var audioFile = new FileSystemResource("/path/to/your/resource/speech/jfk.flac");
AudioTranscriptionPrompt transcriptionRequest = new AudioTranscriptionPrompt(audioFile, transcriptionOptions);
AudioTranscriptionResponse response = azureOpenAiAudioTranscriptionModel.call(transcriptionRequest);