This version is still in development and is not considered stable yet. For the latest snapshot version, please use Spring AI 1.0.0-SNAPSHOT! |
OpenSearch
This section walks you through setting up OpenSearchVectorStore
to store document embeddings and perform similarity searches.
OpenSearch is an open-source search and analytics engine originally forked from Elasticsearch, distributed under the Apache License 2.0. It enhances AI application development by simplifying the integration and management of AI-generated assets. OpenSearch supports vector, lexical, and hybrid search capabilities, leveraging advanced vector database functionalities to facilitate low-latency queries and similarity searches as detailed on the vector database page.
The OpenSearch k-NN functionality allows users to query vector embeddings from large datasets. An embedding is a numerical representation of a data object, such as text, image, audio, or document. Embeddings can be stored in the index and queried using various similarity functions.
Prerequisites
-
A running OpenSearch instance. The following options are available:
-
If required, an API key for the EmbeddingModel to generate the embeddings stored by the
OpenSearchVectorStore
.
Auto-configuration
Spring AI provides Spring Boot auto-configuration for the OpenSearch Vector Store.
To enable it, add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-opensearch-store-spring-boot-starter</artifactId>
</dependency>
or to your Gradle build.gradle
build file:
dependencies {
implementation 'org.springframework.ai:spring-ai-opensearch-store-spring-boot-starter'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
For Amazon OpenSearch Service, use these dependencies instead:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-aws-opensearch-store-spring-boot-starter</artifactId>
</dependency>
or for Gradle:
dependencies {
implementation 'org.springframework.ai:spring-ai-aws-opensearch-store-spring-boot-starter'
}
Please have a look at the list of configuration parameters for the vector store to learn about the default values and configuration options.
Additionally, you will need a configured EmbeddingModel
bean. Refer to the EmbeddingModel section for more information.
Now you can auto-wire the OpenSearchVectorStore
as a vector store in your application:
@Autowired VectorStore vectorStore;
// ...
List<Document> documents = List.of(
new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", Map.of("meta1", "meta1")),
new Document("The World is Big and Salvation Lurks Around the Corner"),
new Document("You walk forward facing the past and you turn back toward the future.", Map.of("meta2", "meta2")));
// Add the documents to OpenSearch
vectorStore.add(documents);
// Retrieve documents similar to a query
List<Document> results = vectorStore.similaritySearch(SearchRequest.build().query("Spring").topK(5).build());
Configuration Properties
To connect to OpenSearch and use the OpenSearchVectorStore
, you need to provide access details for your instance.
A simple configuration can be provided via Spring Boot’s application.yml
:
spring:
ai:
vectorstore:
opensearch:
uris: <opensearch instance URIs>
username: <opensearch username>
password: <opensearch password>
index-name: spring-ai-document-index
initialize-schema: true
similarity-function: cosinesimil
batching-strategy: TOKEN_COUNT
aws: # Only for Amazon OpenSearch Service
host: <aws opensearch host>
service-name: <aws service name>
access-key: <aws access key>
secret-key: <aws secret key>
region: <aws region>
Properties starting with spring.ai.vectorstore.opensearch.*
are used to configure the OpenSearchVectorStore
:
Property | Description | Default Value |
---|---|---|
|
URIs of the OpenSearch cluster endpoints |
- |
|
Username for accessing the OpenSearch cluster |
- |
|
Password for the specified username |
- |
|
Name of the index to store vectors |
|
|
Whether to initialize the required schema |
|
|
The similarity function to use |
|
|
Strategy for batching documents when calculating embeddings. Options are |
|
|
Hostname of the OpenSearch instance |
- |
|
AWS service name |
- |
|
AWS access key |
- |
|
AWS secret key |
- |
|
AWS region |
- |
The following similarity functions are available:
-
cosinesimil
- Default, suitable for most use cases. Measures cosine similarity between vectors. -
l1
- Manhattan distance between vectors. -
l2
- Euclidean distance between vectors. -
linf
- Chebyshev distance between vectors.
Manual Configuration
Instead of using the Spring Boot auto-configuration, you can manually configure the OpenSearch vector store. For this you need to add the spring-ai-opensearch-store
to your project:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-opensearch-store</artifactId>
</dependency>
or to your Gradle build.gradle
build file:
dependencies {
implementation 'org.springframework.ai:spring-ai-opensearch-store'
}
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Create an OpenSearch client bean:
@Bean
public OpenSearchClient openSearchClient() {
RestClient restClient = RestClient.builder(
HttpHost.create("http://localhost:9200"))
.build();
return new OpenSearchClient(new RestClientTransport(
restClient, new JacksonJsonpMapper()));
}
Then create the OpenSearchVectorStore
bean using the builder pattern:
@Bean
public VectorStore vectorStore(OpenSearchClient openSearchClient, EmbeddingModel embeddingModel) {
return OpenSearchVectorStore.builder(openSearchClient, embeddingModel)
.index("custom-index") // Optional: defaults to "spring-ai-document-index"
.similarityFunction("l2") // Optional: defaults to "cosinesimil"
.initializeSchema(true) // Optional: defaults to false
.batchingStrategy(new TokenCountBatchingStrategy()) // Optional: defaults to TokenCountBatchingStrategy
.build();
}
// This can be any EmbeddingModel implementation
@Bean
public EmbeddingModel embeddingModel() {
return new OpenAiEmbeddingModel(new OpenAiApi(System.getenv("OPENAI_API_KEY")));
}
Metadata Filtering
You can leverage the generic, portable metadata filters with OpenSearch as well.
For example, you can use either the text expression language:
vectorStore.similaritySearch(
SearchRequest.builder()
.query("The World")
.topK(TOP_K)
.similarityThreshold(SIMILARITY_THRESHOLD)
.filterExpression("author in ['john', 'jill'] && 'article_type' == 'blog'").build());
or programmatically using the Filter.Expression
DSL:
FilterExpressionBuilder b = new FilterExpressionBuilder();
vectorStore.similaritySearch(SearchRequest.builder()
.query("The World")
.topK(TOP_K)
.similarityThreshold(SIMILARITY_THRESHOLD)
.filterExpression(b.and(
b.in("author", "john", "jill"),
b.eq("article_type", "blog")).build()).build());
Those (portable) filter expressions get automatically converted into the proprietary OpenSearch Query string query. |
For example, this portable filter expression:
author in ['john', 'jill'] && 'article_type' == 'blog'
is converted into the proprietary OpenSearch filter format:
(metadata.author:john OR jill) AND metadata.article_type:blog